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The hallmark of the spin-Hall insulator is the presence of gapless edge states of different spins moving

in opposite directions. Through analytical solutions in a model calculation for a strip of finite width, we

find that edge states on the two sides can couple together to produce a gap in the spectrum, destroying the

quantum spin-Hall effect. The application of a magnetic field can however modify and even remove the

gap by shifting the momenta of the edge states relative to each other.
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Recent discovery of quantum spin-Hall (QSH) effect
brings into the family of Hall systems a new member, a
band insulator with topological properties of electrons
distinct from the conventional ones [1]. First proposed
for a model graphene system by Kane and Mele [2], the
QSH system has an energy gap in the bulk, but has gapless
helical edge states with different spins moving in opposite
directions. A more realistic model was proposed by
Benevig et al. [3] based on semiconductor HgTe=CdTe
quantum wells, which was soon confirmed by experiment
with the observation of ballistic edge channels [4]. Several
other candidates of QSH system were also proposed, such
as GaAs under shear strain [5] and a multilayer Bi thin film
[6]. Intensive theoretical studies are being made to explore
the exotic properties of the QSH effect and other topologi-
cal insulators [7]. Very recently, it was reported that mas-
sive Dirac particles exist in the bulk of Bi0:9Sb0:1, which is
a hallmark of higher dimensional QSH insulator [8].

The theory of QSH effect in HgTe=CdTe quantum well
was based on an effective 4-band model that depicts the
inversion crossing of electron and hole band [3]. Until the
present, almost all works are based on numerical solutions
of the model in a tight-binding method [2,9,10]. In this
Letter, we present an analytical study of the effective
4-band model for the HgTe=CdTe quantum well, in par-
ticular, for the case of a finite strip geometry which is used
in the experiment. We show that the edge states on the two
sides can couple together to generate a gap in the spectrum
even in the clean limit, breaking the edge channels. This is
a striking difference from the quantum Hall edge states
which do not couple across the width of the strip in the
absence of scattering. However, the application of a mag-
netic field can shift or even remove the gap by changing the
relative momenta of the edge channels with the gauge
potential.

The effective 4� 4 model for QSH effect was derived
from the Kane model for semiconductors confining in a
heterojunction of semiconductor Hg=CdTe [3]

H ðkx; kyÞ ¼ HðkÞ 0
0 H�ð�kÞ

� �
: (1)

HðkÞ ¼ �kI2 þ daðkÞ�a, with I2 being a 2� 2 unit ma-
trix, and �a the Pauli matrices. For a small kx expansion,
�k ¼ C�Dðk2x þ k2yÞ, d1 ¼ Akx, d2 ¼ Aky, and d3 ¼
MðkÞ ¼ M� Bðk2x þ k2yÞ. A, B, C, D, and M are expan-

sion parameters that are determined by the thickness of the
quantum well and the material parameters. The upper
block HðkÞ is the for spin up (ms ¼ 1=2, 3=2), and the
lower block is for the spin down (ms ¼ �1=2,�3=2). The
most striking property of the model is that the mass or
gap parameter M changes its sign when the thickness d of
the quantum well is varied through a critical thickness
dc (¼ 6:3 nm) associating with the transition of electronic
band structure from a normal to an ‘‘inverted’’ type [11].
We will now solve this model (1) in a finite strip geome-

try of the width L with the periodic boundary condition in
the x direction and an open boundary condition in the y
direction. In this case, kx is a good quantum number, but ky
is replaced by using the Peierls substitution. ky ¼
�i@=@y ¼ �i@y. The Hamiltonian (1) is block diagonal,

and the eigenvalue problem of the upper and lower blocks

can be solved separately, i.e., Ĥ"�" ¼ E�" and Ĥ#�# ¼
E�#. Because the lower block H�ð�kÞ is the time reversal

of the upper block HðkÞ, the solution �#ðkx; yÞ ¼
��"ðkx; yÞ, where � ¼ �i�yK is a ‘‘time-reversal’’ op-

erator and K stands for complex conjugation. Thus, we can
only focus on the solution for the upper block of this
Hamiltonian.
To have solutions for the energy spectrum and wave

functions, we solve the Schrödinger equations for the
upper block,

½M� Bþðk2x � @2yÞ�c 1 þ Aðkx � @yÞc 2 ¼ Ec 1; (2)

Aðkx þ @yÞc 1 � ½M� B�ðk2x � @2yÞ�c 2 ¼ Ec 2; (3)

with B� ¼ B�D. From Eqs. (2) and (3), using the trial
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function c 1;2 ¼ e�y, the secular equation gives four roots

��1 and ��2,

�2
1;2 ¼ k2x þ F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � ðM2 � E2Þ=BþB�

q
; (4)

where F ¼ A2�2ðMBþEDÞ
2BþB�

. With the open boundary condi-

tions of �"ðkx; y ¼ �L=2Þ ¼ 0, we have an analytical

expression for the wave function �"

c 1 ¼ ~cþfþðkx; yÞ þ ~c�f�ðkx; yÞ; (5)

c 2 ¼ ~dþfþðkx; yÞ þ ~d�f�ðkx; yÞ; (6)

with

fþðkx; yÞ ¼ coshð�1yÞ
coshð�1L=2Þ �

coshð�2yÞ
coshð�2L=2Þ ; (7)

f�ðkx; yÞ ¼ sinhð�1yÞ
sinhð�1L=2Þ �

sinhð�2yÞ
sinhð�2L=2Þ : (8)

The nontrivial solution for the coefficients ~c� and ~d� in the
wave functions leads to a secular equation

tanh�1L
2

tanh�2L
2

þ tanh�2L
2

tanh�1L
2

¼�2
1�

2
2þ�2

2�
2
1�k2xð�1��2Þ2

�1�2�1�2

; (9)

where �1;2ðEÞ ¼ E�Mþ Bþk2x � Bþ�2
1;2. Equations (4)

and (9) give the energy dispersions for electrons, and the
values of two characteristic quantities �1;2.

General properties of the solution for �1;2 determines the

distribution of the wave functions in space. In a large L
limit, a purely imaginary � ¼ iky is always the solutions of

the equations, and gives two branches of spectra, E� ¼
�k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM� Bk2Þ2 þ A2k2
p

. The corresponding solutions
for wave function in Eqs. (5) and (6) are expressed in
term of sinkyy and coskyy and span in the whole space;

i.e., the solutions are for the bulk states. Except for these
solutions of imaginary �, there also exist solutions of real
�s when

A2=BþB� > 4M=B> 0: (10)

In the large L limit, we have

E� ¼ M� Bþ�1�2 � Bþð�1 þ �2Þkx � Bþk2x: (11)

Near kx ¼ 0, we have two linear dispersions, E�ðkxÞ ¼
�MD=B� A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BþB�=B2

p
kx þOðk2xÞ. For real roots �1;2,

the function f�ðkx; yÞ are distributed dominantly near the
edge (y ¼ �L=2) in the scale of ��1

1;2 . That’s why these

states are called the edge state. The linear dispersions of
the edge states are characteristic of QSH effect. Our result
is consistent with those by means of the tight-binding
approximation [9].

One of the key features for the solution of a finite width
L is the gap opening for the energy dispersion of the edge
state. For real � and finite L, the right hand side of Eq. (9) is
always greater than 2. If �1;2L � 1, it is approximately

2þ 4e�2�2L (assuming �1 � �2). From Eq. (9), it is found
that a finite energy gap � ¼ Eþ � E� opens at kx ¼ 0

� ’ 4jABþB�Mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3ðA2B� 4BþB�MÞp e��2L; (12)

which decays in an exponential law of L. This is the main
consequence in the present work. It is different from be-
haviors of the energy level discretization of the bulk states
where the wave functions are confined in a finite space and
energy separation decays in a power law for a large L.
In general cases, the energy dispersion and energy gap

for a finite width L are calculated numerically as shown in
Fig. 1. As a concrete example, we adopt the model pa-
rameters for the ‘‘inverted’’ quantum well from Ref. [10]
for all numerical calculations in the present Letter as
listed in the caption of Fig. 1. For L ¼ 1000 nm, the
energy gap is very tiny, � ¼ 1:41� 10�7 meV. How-
ever, for L ¼ 200 nm, the gap � is 0.4509 meV, which
becomes large enough to be measurable in experiments.
We plot the energy spectra for the edge states of several
sizes in Fig. 1(a). For a narrow width L (e.g., L ¼
200 nm), the spectra are parabolic-like since an energy
gap opens near kx ¼ 0. The size-dependence of the energy
gap is plotted in Fig. 1(b).
The expressions for the wave functions of the edge states

are

�"þ ¼ ~cþeikxxðfþ þ �þ
kx
f�; �þ

1 f� þ �þ
kx
�þ
2 fþÞT; (13)

�"� ¼ ~c�eikxxðf� þ ��
kx
fþ; ��

2 fþ þ ��
kx
��
1 f�ÞT; (14)

where

��
1 ¼ Bþð�2

1��2
2Þ=A

�1 coth
�1L
2 ��2 coth

�2L
2

;

��
2 ¼ Bþð�2

1��2
2Þ=A

�1 tanh
�1L
2 ��2 tanh

�2L
2

;

��
kx
¼ Bþð�2

1��2
2Þkxð�1=�2Þ�

��1tanh
� �1L

2 ���2tanh
� �2L

2

;

for E ¼ E� and ~c� are normalization constants. The so-
lutions can be simplified in a large L limit as ��

1 ¼ ��
2 ¼

� ¼ Bþð�1 þ �2Þ=A and �þ
kx
¼ ���

kx
¼ �sgnðkxÞ. Other

two solutions for the lower block can be produced by
means of the time-reversal operation, �#� ¼ ��"�, and
the spectra are degenerate with those of the upper block as
a result of time-reversal invariance.
The density distribution at the two edges are mainly

determined by the larger one of the length scales ��1
1;2 ,

according to the present analytic solutions of wave func-
tions. In the example in Fig. 1, we notice that ��1

2 � ��1
1 .

For a larger size of the sample, the density of the wave
function increases in an exponential law in the shorter scale
of ��1

1 and then decays exponentially in a longer scale of
��1
2 near the edge, which is consistent with the work by

König et al. [10]. The wave function almost vanishes far
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away from the edges if the width of the sample is much
larger than the longer scale ��1

2 . As an example, the
density distributions of �"�ðkx; yÞ for L ¼ 200 nm are

plotted for demonstration in Fig. 2 where ��1
2 at kx ¼ 0

are 55.9 and 51.8 nm, respectively. The states of�"þðkx; yÞ
and �"�ð�kx; yÞ (kx > 0) have the same spin [/ð1;��ÞT
in the large L limit] and the positive velocity, vx > 0 when
kx deviates away from kx ¼ 0 and the density distribution
is located at one side while the states of �"þð�kx; yÞ and
�"�ðþkx; yÞ (kx > 0) have spin [/ð1; �ÞT in the large L
limit] and a negative velocity, vx < 0, and are distributed
on the other side. However, near kx ¼ 0, from the solution
we found that �"�ðkx; yÞ and �"�ð�kx; yÞ couple together
due to the finite-size effect. Consequently, the densities of
the wave functions �"�ðkx ¼ 0; yÞ are symmetrically dis-

tributed at the two sides. This fact is consistent with the
opening of an energy gap in the spectra at kx ¼ 0.
As a finite-size effect, the charge conductance of edge

states in a strip geometry will be modified. The charge con-
ductance for a QSH phase was predicted theoretically to be
2e2=h because of the presence of two 1D spin-resolved
conducting channels at the edges of the strip, which was
measured experimentally [4]. When the energy gap of edge
states opens, the conductance will be modified. Following
the Landauer-Büttiker formula [12], the charge conduc-
tance has the form,

Gð�Þ¼2e2

h

�
1

e½ð�=2Þ���=kBTþ1
� 1

e½�ð�=2Þ���=kBTþ1
þ1

�
:

At low temperatures, Gð�Þ ! 2e2=h only when the Fermi
level locates out of the gap �ðLÞ. Below the characteristic
temperature of kBT

� ¼ �, a dip will be obviously exhib-
ited in the curve of conductance via the gate voltage. We
plot the temperature dependence of the conductance in
Fig. 3. In the experiment by König et al. [4], the smallest
size of the sample is L ¼ 0:5 �m, and the measurement
was performed at temperature of 30 mK. The calculated
energy gap is 1:6� 10�3 meV (�19 mK), which is al-
ready comparable with the experiment temperature. For a
smaller sample, the energy gap � of L ¼ 0:2 �m is about
0.451 meV, and the temperature T� is enhanced to be
5.22 K. This effect should be measured according to the
current technique. By the way, it is also worth noting that
the gap is also highly sensitive to the thickness of quantum
well, as all parameters in Eq. (1) are functions of the
thickness.
Our solutions show that the QSH edge states are quite

different from the edge states of a conventional QH strip.
For a QH strip with translational symmetry along the strip,
the states are classified with the momentum kx. The edge
states at the two sides have different kx and do not mix

FIG. 2 (color online). The density dis-
tribution of the two edge states
�"�ðkx; yÞ for L ¼ 200 nm. (a) The

solid line corresponds to j�"þðkx; yÞj2,
and the dotted line to j�"þð�kx; yÞj2 at

kx ¼ 0:01 nm�1; (b) The solid line
corresponds to j�"�ðkx; yÞj2, and the

dotted line to j�"�ð�kx; yÞj2 at kx ¼
�0:01 nm�1; (c) and (d) for kx ¼
0 nm�1.

FIG. 1 (color online). (a) Energy spectra of edge states for L ¼
200 nm (solid lines) and L ¼ 1000 nm (dashed lines). The
parameters are adopted from Ref. [10], A ¼ 364:5 meVnm, B ¼
�686 meVnm2, M ¼ �10 meV, D ¼ �512 meV nm2. As a
comparison, numerical results of tight-binding approximation
are also plotted as black squares for L ¼ 200 nm and black dots
for L ¼ 1000 nm. (b) The width dependence of the energy gap
� of the edge states.
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together even when the two states overlap in space [13]. In
the case of a QSH strip, the two states have the nearly equal
energy and momentum near the anticrossing points. So
they can couple together to open an energy gap when their
energies becomes closer and the wave functions have over-
laps in a finite space. The magnetic field dependence of
the QSH edge states also reflects this peculiar property.
Consider the sample is subjected to a weak perpendicular
magnetic field Bz. Using the Peierls substitution, kx !
kx � eAx=@ in Eq. (1) by taking the gauge, Ax ¼ �Bzy
(for jyj<L=2) and Ay ¼ 0 in order to keep kx as a good

quantum number. As the wave functions of the edge states
decay exponentially, the expectation values of Ax in the
two edge states is proportional to L approximately for L �
��1
1;2 . The energy will be shifted by �E ¼ þg�BBz

{g � mevx½L� ��1
1 � ��2

2 � 2ð�1 þ �2Þ�1�=@g near
kx ¼ 0. Thus, the energy spectra of the two edge states
of the upper block will shift downward or upward EðkxÞ �
�vx@kx þ g�BBz for a large L. By increasing the mag-
netic field Bz the anticrossing point of energy spectra is
eventually moved out of the bulk insulating gap, and the
spectra will not cross in momentum between the gap. How-
ever, other edge states from the lower block have opposite
spin, and their spectra will move towards an opposite
direction. The two sets of the spectra may cross in momen-
tum inside the insulating gap. Numerical results of detailed
calculations are plotted in Fig. 4. The energy shift is very
sensitive to the magnetic field and the width of the sample.
As for the conductance, the value of 2e2=h will recover
near the crossing points at low temperatures. Thus the
magnetoresistance is very sensitive to a tiny field, which
might have potential applications for a sensitive detection.

Finally, we point out that other factors such as disorder
or interaction will further affect the QSH effect in a finite-
size system. In this case, since the edge states at two sides
are not well separated, electron scattering between the
edge states at the two side becomes possible if the weak

disorder or interaction scattering are taken into account. As
a result, the single particle elastic backscattering of the
edge states by disorder will no longer be forbidden, and the
edge states will not be protected completely by the time-
reversal symmetry as in a large L limit [2]. On the other
hand, it is known that the disorder will drive electrons to be
localized in two dimension. The bulk electron localization
will also affect the stability of the edge states if the disorder
is strong enough.
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FIG. 4 (color online). The energy dispersion of the edge states
in a weak field of B ¼ 0:04 T. The dashed lines are for the upper
block, and dotted lines are for the lower block. The solid lines
are for the bulk spectra. The width of sample is L ¼ 200 nm.

FIG. 3 (color online). The variations of conductance G via the
chemical potential � inside the bulk insulting gap for L ¼
200 nm and at temperatures 30 mK and 1.8 K, respectively.
Note that the energy zero point is shifted to the center of the gap
� (¼0:4509 meV).
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