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Multiple Bifurcation Types and the Linear Dynamics of Ion Sputtered Surfaces
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We study the patterns formed on ion sputtered Si surfaces as a function of ion energy and incidence
angle, and identify a region in parameter space where the flat surface is stable. The boundaries between the
stable and pattern-forming regions represent mathematical bifurcations. Our data set exhibits at least two
different bifurcation types. We discuss the constraints imposed by these observations on the correct model
of long wavelength dynamics of ion sputtered surfaces.
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Uniform ion beam sputter erosion of a solid surface
often causes a spontaneously arising pattern in the surface
topography that can take the form of corrugations or arrays
of dots [1]. Periodic self-organized patterns with wave-
length as small as 7 nm [2] have stimulated interest in this
method as a means of sublithographic nanofabrication [3].
The classical linear stability theory of Bradley and Harper
(BH) [4] attributes the pattern to a competition between a
destabilizing (roughening) effect in which the erosion rate
is enhanced at regions of high concave curvature and the
stabilizing (smoothening) effect of surface diffusion. The
BH theory explains several experimental observations,
most notably the widespread observation of ‘“‘ripple rota-
tion”’: with increasing tilt from normal incidence, first the
appearance of ‘“‘parallel-mode ripples” (wave vector par-
allel to the projected ion beam) and then a transition to
“perpendicular-mode ripples” (wave vector perpendicular
to the ion beam). However, serious contradictions have
recently emerged, related both to predictions of instabil-
ities and amplification rates not seen experimentally, as
well as to incorrect prediction of patterns in the nonlinear
regime [1,5]. Resolving these inconsistencies is crucial for
developing a theoretical framework for even qualitatively
predicting evolving surface patterns, and is thus of critical
importance for learning how to control and manipulate the
surface patterns by ion irradiation. To this end, particular
attention is paid to monatomic systems possessing surfaces
that are amorphous under ion bombardment, thereby min-
imizing potentially confounding effects of disproportiona-
tion and crystallographic singularities.

In this Letter we focus on the disagreement between the
linear stability analysis of BH, which predicts that a flat,
uniformly irradiated surface is always unstable, and recent
experiments documenting regimes of two control parame-
ters—incident angle 6 and ion energy E—where the flat
surface is stable. Sharp boundaries between stable and
unstable regimes in control parameter space are known
as bifurcations. Nonequilibrium pattern formation theory
predicts that, for any mechanism, near bifurcations pattern
features are universal, depending only on general charac-
teristics of the dynamics, such as its symmetries, degree of
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criticality (i.e., whether the amplitude vanishes or not), and
whether the characteristic length scale vanishes, diverges,
or remains finite at bifurcation [6]. Characterizing bifurca-
tion type can thus place strong constraints on underlying
physical models. Motivated by this insight, we carried out
careful characterization of patterns around bifurcation
points by varying both incidence angle and ion beam
energy. Our major finding is that a single, monatomic,
isotropic system exhibits two different types of supercriti-
cal bifurcations as incidence angle and ion energy are
varied: a bifurcation of type I, characterized by constant
wavelength, and another bifurcation, of type II, character-
ized by diverging wavelength. This observation, supple-
mented by analysis of evolving patterns near and away
from bifurcations, leads us to point out the inadequacy of
all existing models and to impose strong constraints on the
dominant physical mechanisms.

We performed argon ion (Ar™") irradiation experiments
on 1 cm? Si(001) square samples (p type, 1-10 {2 cm) in
an ultrahigh vacuum chamber (base pressure 7 X
10~ torr at room temperature) with the projected ion
beam direction along the [110] crystallographic direction.
The argon ions were generated using a 3-cm rf source with
graphite accelerating grids [7]. To vary the incidence angle
6, samples were fixed, using melted indium, onto graphite
wedges of various angles which were shielded everywhere
from the ion beam by Si wafer shields. Thus, only silicon is
exposed to the direct ion beam [8] and contamination-
induced dynamics [9] is suppressed. The ion flux from
the source was 0.57 mA cm™? in the plane perpendicular
to the ion beam. The beam divergence was roughly 4.5°
and the distance to the target was approximately 15 cm.
The surface should become amorphous [10] very quickly,
after a fluence of the order 10'* ions cm~2 [11]. Patterns
for 6 <25° (6 > 45°) are first observed at a fluence of
~2 X 10" (1 X 10'7) cm~2. Pattern amplification drops
below exponential, without much change in lateral length
scale [12], at a fluence of ~5 X 10'® (5 X 10'7) cm 2.

After irradiation, atomic force microscopy (AFM) im-
ages were obtained from a Digital Instruments Nanoscope
D3100 AFM in tapping mode. Figure 1 shows the existence
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FIG. 1 (color online). (a)—(c) Effect of incidence angle on
surface morphology following irradiation with 250 eV Ar™ at
ambient temperature. (d)—(f) Effect of ion energy on surface
morphology of Si(001) following irradiation at 10° off-normal
incidence angle and ambient temperature. In all cases, the
substrate is at ambient temperature and the ion fluence is 3.8 X
10" Ar* cm™2 (18 min), the projected ion beam runs from the
bottom of the page to the top, the AFM topograph scan size is
2 um X 2 pm, and the vertical scale is 2 nm.

of a regime of control parameters for which a flat surface is
stable under uniform ion sputter erosion. We demonstrated
true stability by taking samples roughened by irradiating at
250 eV and 10°, and observing decay at all wave vectors
upon further irradiation at 500 eV and 10° (Fig. 4.6 of
[12]).

As the control parameter (6§ or E) traverses a critical
value, we see a transition from a rippling instability to a
stable flat surface. To characterize this transition, we mea-
sured the rms roughness and wavelength of the evolving
pattern as the control parameters approach the bifurcation
points. Figure 2(a) reports the dependence of wavelength
on A and E as the bifurcation points are traversed. Two
central features are evident. As the low angle transition is
approached, the wavelength remains practically constant
[13]. At the high angle transition, the wavelength grows
rapidly, apparently indicating divergence [14]. Figure 2(b)
shows a phase diagram of the patterns observed in the
linear regime as a function of # and E: several qualitative
features including an isotropic array of holes at normal
incidence agree with [15].

Figure 3 focuses on the pattern amplification near the
bifurcation points. Figure 3(a) shows that the amplification
rate varies quadratically with deviation from the high-6
bifurcation point. The inset shows the time dependence of
the amplitude for @ approaching this point: exponential
growth at early time is consistent with the linear regime of
pattern amplification. Figure 3(b) shows the wavelength
versus misorientation. Figures 3(c) and 3(d) show the am-
plification rate versus control parameter near the low-6
bifurcation point. The differing power laws for the lines
superposed on the low- (high-)# bifurcations are those
expected for a finite (infinite) wavelength bifurcation [6].
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FIG. 2 (color online). (a) Dependence of instability wave-
length on ion incidence angle during 250 eV Ar* irradiation.
Circles: perpendicular mode; squares: parallel mode.
Inset: Perpendicular-mode wavelength versus E at 6 = 10°.
(b) Phase diagram for control parameters 6 and E. X: flat;
+: holes; circles: perpendicular-mode ripples; squares: parallel-
mode ripples. Fluence is 3.8 X 10'® Ar* cm™2 except for ripples
at @ = 50°, where fluence is 3.2 X 10'7 Ar* cm™2.

The continuously vanishing amplification rate indicates
that all observed bifurcation points are supercritical. In the
vicinity of supercritical bifurcations, pattern formation can
be described by universal equations whose form depends
only on general symmetries of the underlying dynamics
and on the growth rate of the most unstable modes [6].
Therefore, a correct theoretical description of the patterns
must agree with the global sequence of the experimentally
identified bifurcations.

Theories of sputter erosion predict the evolution of a
surface height profile h(x;y; ). By assuming that the av-
erage response of the surface to the impact of a single ion is
characterized by a cavity derived from Sigmund’s
Gaussian ellipsoid collision cascade model [16], BH found
the linear surface dynamics on length and time scales much
larger than those typical of the atomic response (1 nm,
10719 sec, respectively):

(z_’z = [ +{S,0,, + 5,0,

— BVIh, (1)

where I(0) is the vertical erosion rate of a flat surface, S,(6)
and S,(6) are its curvature coefficients, 6 is the angle
between the normal to the flat surface and the ion beam
direction, and B is a material parameter describing relaxa-
tion and containing the surface free energy and either the
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FIG. 3 (color online). Behavior near bifurcation points for (a),
(b) high-6 and (c),(d) low-6 bifurcations. (a) Amplification rate
versus misorientation for high-6 bifurcation. Inset: Pattern am-
plitude (reckoned as rms surface roughness) versus time.
Squares: 65°; X: 60°; +: 55°; circles: 50°. (b) Wavelength
versus misorientation for high-6 bifurcation. (c¢) Amplification
rate versus misorientation for low-6 bifurcation. (d) Amplifi-
cation rate versus E at 8 = 10°. In (a)-(c), E = 250 eV.

surface diffusivity or the viscosity of the ion-stimulated
layer.

In the linear regime, this model and others we will
discuss may be analyzed by considering the evolution of
normal modes /h4(x, y, 1) * e“d' cos(q.x + g,y) which,
when inserted into Eq. (1), give the amplification rate Rg:

Ry =Re(wy) = —S.qz — S,q5 — Blql*. (2

The stability of a flat surface is determined by the sign of
the maximum growth rate max{Rq}; max{R,} >0 (<0)
corresponds to instability (stability). In BH, S, and S,
were deduced from Sigmund’s Gaussian ellipsoid re-
sponse, in which case S, <0 for all # and E. Hence, for
all values of 6 and E, a flat surface is unstable for some
wave vector perpendicular to the ion beam. Moreover, the
BH theory predicts that for small 6, S, < S, <0, leading
to dominance of parallel-mode ripples, whereas for large 6
S, < §,, leading to dominance of perpendicular-mode rip-
ples. The BH theory is thus contradicted firstly by the
existence of a stable parameter regime, and secondly by
our observations that perpendicular modes are the most
unstable at small 6.

Several modifications to the BH model have been pro-
posed which allow stability for some range of incidence
angles. Figure 4 illustrates three such models by highlight-
ing their supercritical bifurcation points. The left-hand
column of Fig. 4 considers a modification of BH [17]

that replaces the BH curvature coefficients S,; S, by effec-
tive coefficients S¢T, S¢, whose parameter dependence
contains regimes where both coefficients are positive, im-
plying stability of flat surfaces. These can arise either from
response functions to ion impact with shapes different than
Gaussian ellipsoids or from nonerosive mass flow at the
impact site [18]. Both of these modifications preserve the
experimentally robust # dependence of the sputter yield.
With mass flow as the only modification to BH theory, S¢if
and S¢ can both be positive at low angles, with a sign
change in ¢ occurring at intermediate angles [17] caus-
ing a parallel-mode instability. Because the most unstable

wave number ¢g,, = v/ —S"/2B, we have that ¢,, — 0 as
St vanishes. Hence for these models the pattern wave-
length diverges at the bifurcation point.

The middle column of Fig. 4 shows how this picture is
modified by a damping term —Kh, where K is a positive
constant [19]. This results in a constant stabilizing contri-
bution (i.e., * —g°) to the amplification rate R, causing
the bifurcation point to occur at nonzero S°f and g. We
note that this term is offered as a proxy for a model of
redeposition but has not been derived from more funda-
mental principles. Finally, the right-hand column of Fig. 4
shows the BH model augmented by a term caused from ion
induced surface stress. This additional destabilizing term
causes the Asaro-Tiller elastic energy-induced instability
of solid surfaces [20,21], and may become relevant if
sufficient stress accumulates during the ion irradiation
process [22]. In this case the bifurcation occurs at finite g.

The terms described in Fig. 4 that cause bifurcations at
nonzero g require integral operators, whose range is much
larger than the pattern wavelength. Although they are not
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FIG. 4. Schematic plots depicting the transition from unstable
to stable surface dynamics for three dispersion relations.
(a) Left-hand column: generalized BH Eq. (1), where the tran-
sition occurs at S* = 0 with diverging wavelength. (b) Middle
column: with Facsko nonlocal ‘“damping term,” transition oc-
curs at S¢* < 0 with finite wavelength. (c) Right column: with
Asaro-Tiller nonlocal elastic energy mechanism, transition oc-
curs at S¢* > 0 with finite wavelength.
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likely to be unique, they raise the intriguing possibility of
the importance of nonlocal processes in addition to the
local response of surfaces to ion impact.

Modification of only the coefficient of the quadratic
term cannot reconcile theory and experiment, both because
it retains a diverging wavelength at bifurcation [Fig. 4(a)]
and because it predicts parallel mode at low angles contra-
dicting our low angle experimental observations. The
Asaro-Tiller mechanism gives rise to finite-wavelength
bifurcations, which in principle may favor perpendicular
mode at low angles due to higher stress in the perpendicu-
lar direction for off-normal incidence [23]. The main prob-
lem with this mechanism is that preliminary in situ stress
measurements [23] indicate stresses less than 200 MPa for
which the standard (S = 0) model [21] predicts an in-
stability wavelength 2 orders of magnitude larger than that
observed. And allowing S # 0 works only if S°f >0
[Fig. 4(c)], which predicts even longer wavelengths. Thus
stress induced instability can work only if there is another
(as yet unknown) mechanism for increasing the tenacity of
the instability.

Another possible scenario posits that the shape of the
single-impact crater function varies from Sigmund’s
Gaussian ellipsoid response so as to change the relative
stability of perpendicular and parallel mode at low angle
(so that ST <S¢ < 0), while reversing their stability
St < §eff (§¢T < 0) at higher angles. Although we do
not have a specific example of such a crater function,
previous work [17] demonstrates that small modifications
to crater shapes easily change the relative stabilities of S¢If
and S In this form, the model would still predict diverg-
ing wavelengths at the bifurcation points. An additional
process such as those discussed above would still have to
be significant in the vicinity of the finite-wavelength
bifurcation.

The experiment reported here, together with a careful
analysis of the dynamics near bifurcation points, provides
important constraints on the relevant physical processes in
ion beam sputtering. Studies of pattern formation in other
systems have shown that the physical processes identified
this way are important even far from the bifurcation points.
Our application of these tools has demonstrated that—in
the linear regime for isotropic, elemental systems—at least
one and quite possibly two additional physical effects
beyond those in the classical theory are necessary to ex-
plain observed experimental results. A better understand-
ing of the role of stress in the amorphous layer, a physical
process leading to a nonlocal damping term, and the char-
acterization of actual crater functions in physical experi-
ment or molecular-dynamic simulation should be
considered high research priorities. More generally, we
suggest that pattern-forming analysis tools will provide
more constraints on existing theories, as well as vetting
new theories as they emerge.
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