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We study the liquid-liquid demixing of a binary mixture with a symmetrical coupling to the quenched

disorder by means of computer simulation. The critical point in the thermodynamic limit is estimated both

by assuming the knowledge of the critical exponents and independently of them. The finite-size scaling

analysis of the susceptibilities and the values of the critical amplitudes show that the universality class of

the fluid mixture is compatible with the diluted quenched-Ising model. Our findings extend the class of

systems exhibiting the same critical behavior of diluted antiferromagnets.
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During the past decades, a number of experiments on
binary fluid mixtures adsorbed in porous disordered mate-
rials, including glasses [1–3], gels [4], and metals [5], has
shown that the phase behavior can be quite different from
the bulk case. Though deviations of the critical parameters
in the presence of fluid-pore wall interactions are some-
what expected, the assessment of the nature of the phase
transitions has been an elusive goal for a long time [4,6].
The ubiquitous long-time relaxation and the resulting dif-
ficulty to observe a macroscopic phase separation on a
measurable time scale are explained mainly in the frame-
work of the random field Ising model (RFIM) [7]. Very
recently, Vink, Binder, and Löwen [8] used computer
simulation to suggest that colloid-polymer mixtures
trapped in colloidal matrices could be promising candi-
dates to observe a genuine RFIM behavior. The fluctua-
tions of the local chemical potential �ð ~rÞ of the fluid,
originated by the size polydispersity of the random pores,
are the counterpart of the random magnetic fields hi of the
RFIM. For binary mixtures, this mechanism is driven by
the preferential interaction of one of the two species with
the pore walls. Fluctuations of�ð ~rÞ are expected to act as a
random field only when � � �R, where � is the correlation
length of the relevant order parameter and �R is the average
radius of the pore cavity. To date, this condition has never
been achieved experimentally because � tends to round off
near the critical point at a value that is of the order of the

pore size, e.g., � � 30–35 �A in silica aerogels [9] or � <

70 �A in Vycor glass [3]. The difficulty to sense the disorder
of the confining material on distances longer than the pore
width is not completely understood [3]. A plausible expla-
nation of this drawback is found in the wetting transition on
the surface of the walls of one of the two components [2,3]
or of the denser phase of the liquid-gas transition [6,9].
Wetting suppresses critical fluctuations and promotes a
microphase separation inside the single cavities of the
random matrix [10]. Both RFIM and wetting hinge upon
the same physical argument, i.e., preferential adsorption of
one of the two components on the solid host [7,10].

Accordingly, two features can be predicted at the same
time when favorable fluid-matrix interactions are absent:
The role of wetting in preventing the macroscopic phase
separation should be milder, and the RFIM conjecture is
not valid anymore. Thus, a fundamental issue is to deter-
mine the universality class of a binary fluid mixture in
which the two species interact similarly with the pore
walls.
In this Letter, we report evidence for a binary mixture in

the presence of random pore walls that the critical behavior
is in agreement with the one predicted for the weakly
diluted quenched-Ising model, or random Ising model
(RIM) [11,12], provided the interaction parameters are
invariant with respect to the interchange of the particle
species. The RIM is the universality class of a ferromag-
netic material weakly diluted with a nonmagnetic compo-
nent far from the percolation threshold. In order to figure
out this result, it is useful to consider a lattice-gas model in
the presence of correlated random fields, such as the one
reported in Ref. [13], and the usual equivalence with a
spin-1=2 model. In the absence of random fields, one
recovers the diluted quenched-Ising model, but without
hole-particle symmetry due to fluid-matrix interactions.
Here we consider a continuum model of a binary fluid
mixture, namely, a symmetrical, nonadditive hard-sphere
mixture (NAHSM), where the diameters of species 1 and 2
are, respectively, �1 ¼ �2 ¼ � and the cross interaction
�12 is determined by the positive value of the nonadditivity
parameter �: �12 ¼ 0:5ð�1 þ �2Þð1þ �Þ. Bulk symmet-
rical NAHSMs always exhibit a demixing transition, and
their critical point has been recently demonstrated to be of
the Ising type [14]. We adopt, as a model for the diluted
disorder, an ensemble of ‘‘frozen’’ spatial configurations of
hard-sphere particles of diameter �0 ¼ �. Our system
features a fluid mixture with symmetrical fluid-pore wall
interactions and in the presence of quenched disorder
[8,13]. Besides the statistical average over the configura-
tions of the fluid molecules, thermodynamic quantities are
calculated by averaging over a number of spatial realiza-
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tions of the matrix. In our calculations, we fix � ¼ 0:2, the
reduced number density of the matrix �0�

3 ¼
ðN0=VÞ�3 ¼ 0:1, and we use � as unit of length. As out-
lined before, no random fields can be associated with our
model, and the phase coexistence always satisfies the two
symmetrical relations xI1 ¼ xII2 and xI2 ¼ xII1 , where x�� is

the composition of the species labeled � in the � phase.
For symmetrical mixtures, these relations imply that the
critical composition is xc ¼ ðN1=NÞc ¼ 0:5. We per-
formed a finite-size scaling analysis of the liquid-liquid
phase separation for a number of particles N ¼ 256, 500,
1000, 2048, 4000, and 10000, by means of semigrand
canonical ensemble Monte Carlo [14] computer simula-
tions [15]. The most useful quantity to study the phase
separation is the probability distribution ½PNðmÞ�qa of the

order parameter m ¼ jx� 0:5j averaged over different
matrix realizations (½� � ��qa), where the composition is x

and m plays the same role of the magnetization in anti-
ferromagnetic materials. Far below the critical density �N

c ,
½PNðmÞ�qa exhibits a single peak centered around the equi-
molar composition x ¼ 0:5. Close to and above �N

c ,
½PNðmÞ�qa separates into two distinct peaks, which are

symmetrical with respect to the equimolar composition.
By increasing the number of realizations of the matrix n0,
we experienced a rapid convergence of the normalized
histogram ½PNðmÞ�qa to a smooth shape. We estimated

½PNðmÞ�qa by averaging over n0 � 60. We note that the

shape of ½PNðmÞ�qa does not exhibit any trace of violation

of hyperscaling at the critical point, as was shown in
Ref. [8] for a system experiencing an asymmetric coupling
with the matrix. We also estimated the critical ½PNðmÞ�qa at
�0�

3 ¼ 0:3 and found a similar shape. For each system
size, when the critical point is nearly approached from the
two-phase region, m should vanish according to the power
law m / t�, where � is the critical exponent associated
with the order parameter and t ¼ j �

�cðNÞ � 1j. The shape of
the curves reported in Fig. 1 shows finite-size deviations,
especially close to the critical point. A different power law

which takes into account such deviations is �cðNÞ �
�cð1Þ / N�ð1=3�Þ, where � is the critical exponent related
to the divergence of the correlation length and �cð1Þ is the
critical density in the thermodynamic limit (N ! 1). In
order to ascertain the universality class of the system, we
assumed a priori that the symmetrical NAHSM belongs to
the RIM universality class and used the predictions of
finite-size scaling theory to verify this hypothesis. The
estimate of �cðNÞ and �cð1Þ was based on the analysis
of the simulation points close to the critical point by means
of the power laws. In this Letter, we always adopted values
of the most recent RIM critical exponents reported in the
review by Hasenbusch et al. [12], i.e., � ¼ 0:354ð1Þ and
� ¼ 0:683ð2Þ. The curves in Fig. 1 testify to the quality of
the fit of the simulation data close to the critical point. In
the inset in Fig. 1, we report the size-dependent �cðNÞ as a
function of N�ð1=3�Þ. As expected, the data are consistent

with the power law of the correlation length, and the
extrapolation of the linear fit (full line) to zero gives as
an estimate of the critical density in the thermodynamic

limit �ð1Þ
c ¼ 0:4033ð3Þ.

To locate the critical point, we also studied the N de-

pendence of the Binder cumulant [16] U4 ¼ 1� ½hm4i�qa
3½hm2i�2qa ,

where h� � �i is the statistical average over the microstates of
a single matrix realization. This quantity should become
size-independent at the critical point; hence, in the scaling
regime (for sufficiently high N), plots of U4 as a function
of the density are expected to have a common intersection
point, which is indicative of the critical density [16].
According to Hasenbusch et al. [12], the universal value
of U4 at the critical density for the RIM is U�

4 ¼ 0:451ð1Þ
(see the horizontal line in Fig. 2). As shown in Fig. 2, the
intersections of the Binder cumulants occur at a slightly
different value of U4. Corrections to finite-size scaling of
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FIG. 1 (color online). Composition versus reduced density
phase coexistence curves for different system sizes. Power-law
curves are fits of the simulation data close to the critical point.
Inset: Critical densities as a function of N�ð1=3�Þ.
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FIG. 2 (color online). Binder cumulant U4 values for different
system sizes (curves are guidelines for the eye). The horizontal
line is the universal value of U4 for the RIM [11]. Inset: Size-
dependent critical densities (see text) as a function of
N�ð1=3�Þ�ð!=3Þ.
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U4 in the neighborhood of the critical density should
explain the observed shift, which comes out size-
independent for the considered N range [14,16]. Thus,
the critical density can be unambiguously determined at
the crossing point of the Binder cumulants (see Fig. 2) as

�ð2Þ
c ¼ 0:4034ð1Þ [12]. We note that the latter estimate of

�cð1Þ is completely free from any assumptions concerning
the universality class of the system.

Then we evaluate the critical densities [14] ��
cðNÞ as

intersection of the Binder cumulants with the horizontal
line U4 ¼ U�

4 (see Fig. 2). For the size-dependent critical

densities, the scaling behavior is ��
cðNÞ � �cð1Þ /

N�ð1=3�Þ�ð!=3Þ [16], where ! ¼ 0:33ð3Þ is the correction
to the scaling exponent [12]. The critical densities for the
four higher sizes are reported in the inset in Fig. 2 and are
in agreement with the expected scaling behavior. The
extrapolation of the linear fit to the thermodynamic limit

gives �ð3Þ
c ¼ 0:4037ð1Þ, which is consistent with the pre-

vious estimates. In order to verify whether the assumed
universality class is correct for our system, we exploited
the scaling behavior of the susceptibility [8] �N=V ¼
½m2�qa � ½m�2qa around the critical point. �N is a second-

order moment of ½PNðmÞ�qa, and it is supposed to be more

sensitive than m to variations of the critical exponents.
Finite-size scaling theory [16] predicts that, in the neigh-

borhood of the critical point, �N ¼ Nð	=3�Þ�0ðtNð1=3�ÞÞ,
where �0 is a scaling function which is assumed to be
system size-independent and 	 ¼ 1:341ð4Þ is the RIM
exponent associated to the susceptibility [12]. Thus, plots

of N�ð	=3�Þ�N vs tNð1=3�Þ should collapse onto a master
curve, provided the RIM critical exponents [11] and the
estimate of the critical density in the thermodynamic limit

are used. We used the estimates �ð1Þ
c , �ð2Þ

c , and �ð3Þ
c in the

scale factor, and we calculated the susceptibility approach-
ing the critical point both from the one-phase region and
from the two-phase region. The scaling plots of the sus-

ceptibility at �ð1Þ
c ¼ 0:4033 are presented in Fig. 3 for the

four higher system sizes considered in this work. The
coalescence of the data on a master curve is an evident
signature of RIM critical behavior. According to the basic
theory of critical phenomena, the susceptibility should
diverge as � ¼ �t�	 at the critical point, with a value of
the critical amplitude � different when approaching the
critical density for � > �cð1Þ or for � < �cð1Þ. The ratio
between the critical amplitudes in the one-phase region
(�þ) and in the two-phase region (��) is a universal

quantity, e.g., for the 3D Ising universality class is �þ
�� ¼

4:76ð24Þ [12]. As shown in Fig. 3, for large tNð1=3�Þ the data
match the power-law behavior expected in the thermody-
namic limit. Thus, it is convenient to use the critical
amplitude as a single free parameter to fit a line with slope
�	 on the scale of Fig. 3. The fitted values of the critical
amplitudes are presented in Table I. The ratios of the
critical amplitudes for different estimates of �cð1Þ are
reported in Table II. Remarkably, as shown in Table II,

these estimates are consistent both with experimental mea-
surements on antiferromagnets resembling the RIM [17–
19] and with field-theoretical determinations [20]. A subtle
issue to be addressed is the possibility to discriminate,
within our finite-size scaling analysis, between the rela-
tively small differences of the critical exponents of the
RIM and of the 3D Ising model. To this aim, we repeated
again the previous analysis in order to estimate the critical

points �ð1Þ
c and �ð3Þ

c with the 3D Ising model critical ex-
ponents � ¼ 0:3258ð1Þ, � ¼ 0:6304ð13Þ, and ! ¼
0:845ð10Þ and withU�

4 ¼ 0:465ð1Þ [12]. The new estimates

of the critical points are reported in Table I. Then we
considered the effect of scaling the susceptibilities for

both these critical points and for �ð2Þ
c , with � and 	 ¼

1:2396ð1Þ of the 3D Ising model. We observed a neat
worsening of the scaling of the susceptibilities in each of
the three cases. We estimated quantitatively the consis-
tency of the 3D Ising model with our data by calculating
the critical amplitudes, which are reported in Table I. The
ratios of the critical amplitudes in Table II are very differ-
ent from the expected universal value for the 3D Ising
class. Thus, the present analysis rules out the consistency
of our system with the critical exponents of the 3D Ising
model.
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FIG. 3 (color online). Log-log N�ð	=3�Þ�N vs tNð1=3�Þ scaling
plot of the susceptibility for �ð1Þ

c ¼ 0:4033. The legend is the
same as the previous figures. Results are reported in the one-
phase (left panel) and two-phase regions (right panel). The lines
are the power laws � ¼ �þx�	 (left panel) and � ¼ ��x�	

(right panel), where �þ and �� have been used as fit parameters
to the simulation data for large tNð1=3�Þ.

TABLE I. Critical densities as calculated by different methods
and related critical amplitudes.

�cð1Þ �þ ��

0.4033(3) 0.188(3) 0.072(4)

RIM 0.4034(1) 0.189(3) 0.071(3)

0.4037(1) 0.185(3) 0.065(2)

0.4032(1) 0.234(4) 0.094(6)

3D Ising 0.4034(1) 0.236(4) 0.093(6)

0.4027(1) 0.226(4) 0.101(7)
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In summary, the results of the scaling analysis provide
new evidence of RIM behavior also for symmetrical fluids
in the presence of quenched disorder. Pore walls lacking a
preferable mechanism of interaction with one of the spe-
cies of the fluid mixture could be engineered in the realm of
colloid science. Colloidal particles with controlled size and
shape can be intercalated as functional guest molecules in
hydrogel scaffolds or in silica sol, and highly open-cell
pores have been recently obtained [21]. The nature of the
surface interactions of the immobilized colloidal particles
can be tuned by infiltrating the matrix with sol-gel solu-
tions or by chemical treatment [22]. A prototype of a
symmetrical fluid mixture could be realized with colloidal
particles by coating their surfaces with immiscible polymer
brushes of different type and chain length [23]. The meso-
scopic character and the tunability of the interactions of
these systems make them good candidates to study the
critical behavior with a range of experimental techniques.
The possibility to gradually change the fluid-wall interac-
tions in colloidal systems could allow experimental access
to the crossover regime from the RIM to the RFIM also in
fluids adsorbed in random pores, similarly to what is
achieved in dilute anisotropic antiferromagnets by gradu-
ally turning on a uniform magnetic field [24]. As far as the
absence of selective adsorption is concerned, we believe
that a proper tailoring of the interactions could reduce the
wetting of one of the two components on the pore walls,
which depletes the fluid and reduces the volume available
for phase separation [2,3,9]. Thus, the resulting enhance-
ment of the critical fluctuations could allow correlation
lengths spanning several pores and promote a macroscopic
phase separation, which eventually could make it easier to
observe the RIM behavior.
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