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We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by

monitoring their response to slow parameter changes, and show that such resonances can be disabled by

particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching

analogies between dressed atoms and time periodically forced matter waves.
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Recently, it has been demonstrated experimentally that a
macroscopic matter wave of ultracold bosonic atoms con-
fined in an optical lattice can be controlled in a systematic
manner by strong, off-resonant time-periodic forcing:
Under suitably selected conditions, ‘‘shaking’’ the lattice
with kilohertz frequencies mainly effectuates a modifica-
tion of the tunneling matrix element connecting adjacent
lattice sites. In the regime of weak interaction, this phe-
nomenon has been inferred from the expansion of a Bose-
Einstein condensate in a one-dimensional lattice geometry
[1]. A subsequent experiment [2] utilizes the reduction of
the tunneling matrix element to augment the relative im-
portance of interparticle repulsion, such that the quantum
phase transition from a superfluid to a Mott-insulator [3,4]
is induced by adiabatically varying the amplitude of the
driving force [5].

These landmark experiments [1,2] clearly confirm that
there are efficient control mechanisms for ultracold atomic
gases resulting from time-periodic modulation. The situ-
ation encountered here is akin to the dressed-atom ap-
proach: An atom in a laser field becomes ‘‘dressed’’ by
that field and changes its behavior [6]. Similarly, a many-
body matter wave becomes dressed in response to time-
periodic forcing and acquires properties which the un-
forced, bare matter wave did not have.

A system of ultracold bosonic atoms in a shaken, suffi-
ciently deep one-dimensional optical lattice is described, in
the frame of reference comoving with the lattice, by the
driven Bose-Hubbard model defined by the Hamiltonian

ĤðtÞ¼ ĤtunþĤintþĤdriveðtÞ [5,7]. With b̂‘ and n̂‘¼ b̂y‘ b̂‘
denoting the bosonic annihilation and the number operator
for the Wannier state located at the site labeled by ‘ ¼
1; 2; . . . ;M, one has Ĥtun � �J

P
M�1
‘¼1 ðb̂y‘ b̂‘þ1 þ b̂y‘þ1b̂‘Þ,

where the positive hopping parameter J implements the ki-
netics, assumed to be exhausted by tunneling between ad-

jacent sites. Moreover, Ĥint � U
2

P
M
‘¼1 n̂‘ðn̂‘ � 1Þ with

positive interaction parameter U describes the repulsion

of particles occupying the same site. Finally, ĤdriveðtÞ �
K! cosð!tÞPM

‘¼1 ‘n̂‘ models time-periodic forcing with

amplitude K! and angular frequency !. With the particle

number fixed to N, the filling n is given by the ratio
n � N=M.
As witnessed by the experiments [1,2], in a time-

averaged sense, the driven system governed by ĤðtÞ be-
haves similar to a system described by the effective, time-

independent Hamiltonian Ĥeff � J 0ðK!=@!ÞĤtun þ Ĥint,
which means that the effect of the time-periodic force is
captured by replacing the tunneling matrix element J by
Jeff � J 0ðK!=@!ÞJ, with J 0 denoting the ordinary
Bessel function of order zero. This modification of the
hopping matrix element is a hallmark of driven quantum
tunneling [8]; it has been cleanly observed for single-
particle tunneling in strongly driven double-well potentials
[9]. While it becomes exact for a single particle on a one-
dimensional lattice endowed with nearest-neighbor cou-
pling [10], the dynamics are considerably more involved in
the many-body case described by the driven Bose-Hubbard
model. Because of the manifold ways to create excitations

in the many-body system, the Ĥeff-description is endan-
gered by a multitude of resonances, and holds approxi-
mately only when @! is large compared to both energy
scales which characterize the undriven system, U and nJ
[5,11,12]. To further explore the newly emerging notion of
adiabatic control of driven macroscopic matter waves [2],
it is now of great importance to study such resonances in
detail: When do they occur, how strong are they, are they
detrimental to coherent control, or can they, perhaps, even
be exploited? These questions mark the scope of the
present Letter. By means of numerical simulations for
small systems, we first outline an experimentally feasible
detection scheme which allows one to locate major exci-
tation channels in parameter space, and to probe their
strengths. We also demonstrate that the strength of such
excitation channels again is subject to coherent control: A
resonance can be completely quenched by an appropriate
choice of the driving amplitude. In a second step, we make
closer contact between the dressed-atom picture and the
driven matter waves considered here by studying their
quasienergy spectrum. In the final third step, we explain
our findings quantitatively by means of perturbation theory
for Floquet states.
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Consider the following scenario: A system conforming

to the undriven Bose-Hubbard model Ĥtun þ Ĥint is pre-
pared in its ground state for U=J ¼ 0:1. Then, a drive

ĤdriveðtÞ is switched on, with an amplitude increasing
linearly in time, and a high frequency @!=J ¼ 20. Since
this drive is sufficiently off-resonant, one expects the sys-

tem to adiabatically follow the ground state of Ĥeff . After
the working amplitude K! has been reached, it is held
constant. Then, the interaction parameter U is ramped up
at constant rate � � _UT=J (with T ¼ 2�=!) into the
regime where resonances should make themselves felt. In
a laboratory experiment, this can be done, e.g., by increas-
ing the transversal confinement used to create the effective
one-dimensional geometry. We have simulated this proto-
col for a small system with N ¼ M ¼ 7. In Fig. 1, we plot

the squared overlap PeffðtÞ ¼ jhc ðeffÞ
0 jc ðtÞij2 of the sys-

tem’s true state jc ðtÞi, obtained by solving the full time-

dependent Schrödinger equation governed by ĤðtÞ, and the
ground states jc ðeffÞ

0 i of the corresponding instantaneous

operators Ĥeff . Figure 1(a) is obtained for K!=@! ¼ 2:5.
As expected, Peff stays close to unity even when U be-

comes large, thus validating the Ĥeff-description, until at

U=@! � 2=3, it decreases suddenly; the drop is the more
pronounced, the lower the rate �. This abrupt decrease
signals resonant excitation. Experimentally, such resonant
excitation can be detected by time-of flight absorption
imaging. It is indicated by a loss of contrast of the sharply
peaked structures visible in either the single-particle mo-
mentum distribution [4] if the system is in the superfluid
regime (which may be reached by a further adiabatic
parameter variation), or in the two-particle momentum
correlations [13,14] if the system is in the Mott-insulator
regime. Interestingly, when choosing the particular driving
amplitude K!=@! ¼ 3:4, this excitation channel is closed,
and another one at U=@! � 1 appears in Fig. 1(b). This
second resonance is stronger than the first one, since the
drop is fully developed already for larger �. We conclude:

(i) Ĥeff describes the system up to surprisingly large inter-
action strengths U; (ii) the excitation observed at U=@! �
2=3 in Fig. 1(a), and at U=@! � 1 in Fig. 1(b), cannot be
ascribed to a deviation from adiabatic following on the

level of Ĥeff , since the degree of excitation increases with
decreasing parameter variation rate�; (iii) a resonance can
be disabled by adjusting the driving amplitude. Thus, by
applying this or a similar protocol, both the locations and
the strengths of resonant excitation channels can be
probed.
We now shed light on the physics underlying this detec-

tion scheme, and provide an appropriate theoretical frame-
work. Recall that the dressed-atom approach deals with
atoms interacting with a quantized mode of a radiation
field. Accordingly, the energy level diagram of the com-
bined system features identical copies of groups of levels
displaced against each other by the photon energy @! [6].
An analogous picture for dressed matter waves driven by a
classical time-periodic force is obtained by quantum

Floquet theory [15,16]: Given the Hamiltonian ĤðtÞ ¼
Ĥðtþ TÞ, one defines the quasienergy operator Q̂ �
ĤðtÞ � i@@t which acts in the product space H �T
made up from the physical state space H and the space
T of T-periodic functions, and solves the eigenvalue prob-

lem Q̂juðtÞii ¼ "juðtÞii. Because of the periodic boundary
conditions in time, the solutions have the form ju�;mðtÞii �
ju�;0ðtÞii expðim!tÞ, with ! ¼ 2�=T and m ¼
0;�1;�2; . . . ; the label � is chosen such that ju�;0ðtÞii
connects to the �-th energy eigenstate when the driving
force vanishes. Hence, the eigenvalues "�;m � "�;0 þ
m@!, called quasienergies, repeat themselves with period
@! on the energy axis; each state � placing one copy in
each ‘‘Brillouin zone’’ of width @!. Going back to the
actual state space H , the states jc �ðtÞi ¼ ju�;mðtÞii�
expð�i"�;mt=@Þ form a complete set of solutions to the

time-dependent Schrödinger equation.
Figure 2 shows a part of the quasienergy spectrum

belonging to a small driven Bose-Hubbard system (N ¼
M ¼ 5) with @!=J ¼ 20 and K!=@! ¼ 2 versus U=J. Its
basic structure, shown in subplot (a), can be understood as

a superposition of copies of the energy spectrum of Ĥeff ,
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FIG. 1 (color online). Exact time evolution of N ¼ 7 particles
on M ¼ 7 lattice sites. Starting in the ground state at interaction
strength U=J ¼ 0:1, a drive of frequency @!=J ¼ 20 has been
linearly ramped up within 50 cycles T ¼ 2�=! to the working
amplitude K!, before U is increased at various rates � �
_UT=J ¼ 0:3, 0.1, 0.03, 0.01, 0.003, 0.001. We plot the squared
overlap PeffðtÞ of the instantaneous ground state of Ĥeff with the
actual time-evolved state versus UðtÞ=@! at integer t=T. For
large UðtÞ=@!, Peff decreases with decreasing �; the lower �,
the steeper the drop. For K!=@! ¼ 2:5, there is strong resonant
excitation at U=@! ¼ 2=3 (a). For K!=@! ¼ 3:4, this resonance
is quenched, and another one around U=@! ¼ 1 becomes active
(b).
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shifted against each other by integer multiples of @!. The

spectrum of Ĥeff possesses bands, made up from various
types of particle-hole excitations with energies roughly
corresponding to integer multiples of U, clearly identifi-
able through their slopes. While in Fig. 2(a) quasienergy

levels belonging to different copies of the Ĥeff-spectrum
hardly ‘‘notice’’ each other for interaction strengths U=J
much smaller than @!=J ¼ 20, there are pronounced
avoided crossings when U=J becomes comparable to
@!=J, prominently exemplified by the complex patterns
which appear when U=J is an integer multiple of @!=J.
Such avoided crossings indicate resonances which emerge

if eigenstates of Ĥeff are energetically separated by an
integer multiple of @!; their size quantifies the strength
of resonant coupling and determines the degree of devia-

tion from the Ĥeff-description.
Figure 2(b) shows a detail of Fig. 2(a), focusing on one

of the quasienergy copies corresponding to the ground state

of Ĥeff . After separating from the bands of excited states
with increasing U=J, thus indicating the superfluid to
Mott-insulator transition [2,5], this level crosses several

bands associated with different copies of the Ĥeff-spectrum
without being notably affected, until it undergoes a wide

avoided crossing with such a band at U=J � 2
3 @!=J � 13,

and subsequently an even wider one around U=J �
@!=J ¼ 20. These avoided crossings explain the excita-
tion observed in Fig. 1: The dynamical detection scheme
illustrated by that figure relies on the adiabatic principle for
Floquet states [12]. With increasing U, the state jc ðtÞi
adjusts itself to the slowly changing parameter and thus
follows the quasienergy level corresponding to the ground

state of Ĥeff , until it reaches an avoided crossing too wide
to be passed diabatically. Then, an incomplete Landau-
Zener transition to the anticrossing state excites the system.
According to Landau-Zener estimates, and in agreement
with the simulations depicted in Fig. 1, the excitation
probability increases exponentially with both the width
of the anticrossing and decreasing parameter speed.
Thus, the method of detecting resonances in dressed matter
waves by monitoring their response to slow parameter
changes can be regarded as a kind of avoided-level-
crossing spectroscopy.
Note that in contrast to the regime of linear response,

suitable for probing properties of the undriven system, here
we consider the excitation of a system which has already
been strongly modified by the driving force, in a manner

described by Ĥeff . Moreover, besides the wide, ‘‘active’’
avoided quasienergy crossings there also is a host of tiny
avoided crossings, reflecting the high density of quasiener-
gies in each Brillouin zone so that effectively adiabatic

dynamics on the level of Ĥeff actually includes fully dia-
batic Landau-Zener tunneling through these narrow anti-
crossings. In an infinitely large system with a truly dense
quasienergy spectrum, the existence of a well-defined
adiabatic limit cannot, thus, be expected [17]. However,
realistic parameter variations take place on finite time
scales, in all likelihood making the system ‘‘blind’’ against
such small features of the spectrum.
We now formalize our reasoning. For each admissible

set fn‘g of site-occupation numbers, we employ the usual

Fock states jfn‘gi �
Q

‘ðn‘!Þ�ð1=2Þðb̂y‘ Þn‘ jvacuumi for con-
structing an orthonormal basis of Floquet-Fock states

jfn‘g; ~mii � jfn‘gi exp½�i K!

@! sinð!tÞP‘‘n‘� expði ~m!tÞ in
H �T , with ~m serving as ‘‘photon’’ index for distin-
guishing different Brillouin zones. Invoking the scalar
product hh�j�ii � 1

T

R
T
0 dth�j�i, the quasienergy operator

Q̂ � Q̂0 þ Q̂1 of the driven Bose-Hubbard model pos-
sesses the matrix elements

hhfn0‘g; ~m0jQ̂0jfn‘g; ~mii¼� ~m0; ~mhfn0‘gjð ~m@!

þĤintþj0ĤtunÞjfn‘gi;
hhfn0‘g; ~m0jQ̂1jfn‘g; ~mii¼ð1�� ~m0; ~mÞjsð ~m� ~m0Þhfn0‘gjĤtunjfn‘gi;

where j� � J �ðK!=@!Þ indicates the Bessel function of
order � evaluated at K!=@!, and s � P

‘‘ðn‘ � n0‘Þ, giv-
ing s ¼ þ1 (s ¼ �1) if Ĥtun transfers one particle by one
site to the left (right) [11,12]. This splitting of the quasi-

energy operator is performed such that Q̂0 acts within each

FIG. 2. (a) Quasienergy spectrum of a driven Bose-Hubbard
system with N ¼ M ¼ 5, @!=J ¼ 20, and K!=@! ¼ 2 versus
U=J. Bands with different slopes belong to different types of
particle-hole excitations of Ĥeff . Resonant coupling of such
bands results in avoided crossings. The isolated quasienergy
level, highlighted in (b), emerges from the ground state of the
undriven system. Clearly visible are the avoided crossings at
U=@! � 2=3 (U=J � 13) and U=@! � 1 (U=J � 20) which
have been detected dynamically in Fig. 1, whereas there are
no avoided crossings at 1=3 and 1=2.
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subspace with fixed ‘‘photon’’ number ~m in a manner

conforming to Ĥeff; whereas Q̂1 describes the coupling
between these subspaces.

Let us assume that U is comparable to @! while @! 	
nJ, and treat Q̂1 by perturbation theory. For U 	 njJeffj,
the ground state of Ĥeff is approximately given by the
extreme Mott-insulator state jMIi � jfn‘ ¼ ngi with n
particles localized at each site. Excited states differ from
jMIi by particle-hole excitations of energy U; these ex-
citations form bands with widths on the order of 
njJeff j
due to tunneling of the particles and holes ‘‘on top’’ of
jMIi. Thus, near U ¼ �@! with integer � ¼ 1; 2; . . . , the
drive is resonant with respect to the creation of a single

particle-hole pair; eigenstates of Q̂0 differing from jMIi by
one particle-hole pair and � ‘‘photons’’ are degenerate

with jMIi and couple directly (i.e., in first order) via Q̂1

by matrix elements of size� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

Jjs�. This coupling
leads to the large avoided band or level crossings visible in
Fig. 2 at U=J close to 20 and 40.

In second order, the simultaneous creation of two
particle-hole pairs via (quasi-)energetically distant inter-
mediate states is taken into account. Intriguingly, second-
order coupling between states differing from jMIi by �
‘‘photons’’ and two separate particle-hole excitations of
total energy 2U, expected near U ¼ �@!=2 with � ¼
1; 3; 5; . . . (omitting first-order resonances), vanishes com-
pletely due to destructive interference between paths in-
volving different intermediate states. This explains why
there is no avoided crossing at U=J � 10 in Fig. 2.
However, there are nonvanishing second-order processes
creating two overlapping particle-hole pairs, having two
particles or holes sitting at the same site. Assuming unit
filling n ¼ 1, the only possibility is to place both particles
at the same site, costing the excitation energy 3U. For such
excitations near U ¼ �@!=3 with � ¼ 1; 2; 4; 5; . . . , we

find coupling constants c�J
2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þðnþ 2Þp
=@! with

strengths c� � 1
2 ½
P1

~m0¼�1ðjð�þ ~m0Þj ~m0 þ j�ð�þ ~m0Þj� ~m0 Þ� �
½ð2U=@!� �� ~m0Þ�1 � ðU=@!þ ~m0Þ�1� which vanish
for odd �. The plot of c� depicted in Fig. 3 testifies that

these strengths depend in an oscillating manner on the
driving amplitude. In particular, it is possible to adjust
that amplitude such that the resonant coupling strength

vanishes. For instance, the zero of c2 at K!=@! � 3:4 is
the reason for the resonance quenching illustrated in Fig. 1.
In �th order, coupling matrix elements generally are

nJðnJ=@!Þ��1; however, we have hardly noticed third-
order effects in our numerical simulations. Thus,
degenerate-state perturbation theory inH �T systemati-
cally uncovers the hierarchy of resonances which, in a
system with slowly changing parameters, become observ-
able order by order with decreasing parameter speed.
To conclude, we have outlined a scheme for probing

resonances which endanger the adiabatic control of macro-
scopic matter waves achievable through time-periodic
forcing [2]. The theoretical analysis of this scheme reveals
far-reaching conceptual similarities between dressed atoms
and dressed matter waves in shaken optical lattices, thus
opening up wide new grounds between quantum optics and
matter-wave physics.
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FIG. 3 (color online). Coupling strength c� of simultaneous
resonant excitation of two particle-hole pairs with the two extra
particles located at the same site, evaluated at U ¼ �@!=3.
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