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We examine the superfluid and collapse instabilities of a quasi-two-dimensional gas of dipolar fermions

aligned by an orientable external field. It is shown that the interplay between the anisotropy of the dipole-

dipole interaction, the geometry of the system, and the p-wave symmetry of the superfluid order

parameter means that the effective interaction for pairing can be made very large without the system

collapsing. This leads to a broad region in the phase diagram where the system forms a stable superfluid.

Analyzing the superfluid transition at finite temperatures, we calculate the Berezinskii–Kosterlitz–

Thouless temperature as a function of the dipole angle.
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Trapped ultracold gases are increasingly being used to
simulate solid-state systems, where clear experimental
signatures of theoretical predictions are often lacking [1].
A limitation of these gases is that the interactions are
typically s-wave [2] whereas order parameters in solid-
state systems exhibit richer p- and d-wave symmetries.
Recent progress in the production of trapped, cold dipolar
gases [3–5] promises to change this since the dipole-dipole
interaction is long-range and anisotropic. Importantly, the
interaction in fermionic heteronuclear Feshbach molecules
can be large, with electric dipole moments on the order of a
Debye [5–7]. This opens the door to experimentally reach-
ing the superfluid phase. One complicating feature is that
the gases tend to become unstable when interactions are
sufficiently strong and attractive.

In this Letter, we propose confining a gas of fermionic
dipoles of mass m in the 2D plane by a harmonic trapping
potential VzðzÞ ¼ m!2

zz
2=2. For @!z � �F where �F ¼

k2F=2m is the Fermi energy, determined by the 2D density
n2D ¼ k2F=4�, the system is effectively 2D. The dipoles
are aligned by an external field E (see Fig. 1), subtending
an angle�with respect to the x� y plane. The interaction
between two dipole moments d separated by r is given by
VðrÞ ¼ D2ð1� 3cos2�rdÞ=r3. Here, D2 ¼ d2=4��0 for
electric dipoles and �rd is the angle between r and d.
The strength of the interaction is parametrized by the
dimensionless ratio g ¼ 2D2k3F=ð3��FÞ. Since we con-
sider identical fermions at low temperatures T, additional
short range interactions are suppressed. We show that in
this configuration, the effective interaction for pairing has
p-wave symmetry and can be made large without the
system collapsing. This makes the 2D system of dipoles
a promising candidate to study quantum phase transitions
and pairing with unconventional symmetry.

A key point is that the effective dipole-dipole interaction
in the x� y plane can be tuned by changing the angle �.
This gives rise to several interesting effects. For� ¼ �=2,
the interaction is repulsive and isotropic in the x� y plane,
and the dipoles are predicted to undergo a quantum phase

transition to a crystalline phase for g ’ 27 at T ¼ 0 [8]. As
� is decreased, the interaction becomes anisotropic in the

x� y plane, and for�< arccosð1= ffiffiffi
3

p Þ, an attractive sliver
appears along the x axis as illustrated in Fig. 1. This gives
rise to two competing phenomena: superfluidity and col-
lapse [4]. The resulting phase diagram is shown in Fig. 2
and is the main focus of this Letter.
We first examine the critical angle �c below which the

attractive part of the interaction overcomes the Fermi
pressure and the gas is unstable towards collapse. The
instability is identified with a negative value of the inverse
compressibility ��1 ¼ n22D@

2E=@n22D. We analyze the
stability of the dipolar Fermi gas using the normal phase
energy density En ¼ Ekin þ Edir þ Eex with

E kin ¼ 1

ð2�Þ2
Z

d2k
k2

2m
fk ¼ �

2

n22D
m

�
1

�2
þ �2

�
; (1)

the kinetic energy density. We allow for the possibility that

FIG. 1 (color online). In the proposed experimental setup,
aligned Fermi dipoles are confined in the x� y plane. The
dipoles form an angle � with respect to the x� y plane. As
the angle � is reduced, the region where the interaction between
dipoles is attractive increases.
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the Fermi surface can deform [9] due to the anisotropy of
the interaction, by writing the T ¼ 0 Fermi distribution
function as fk ¼ �ðk2F � k2y=�

2 � k2x�
2Þ. The direct and

exchange energies are (r � r1 � r2)

E dir ¼ 1

2L2

Z
d3r1d

3r2nðr1; r1ÞVðrÞnðr2; r2Þ; (2)

and

E ex ¼ � 1

2L2

Z
d3r1d

3r2nðr1; r2ÞVðrÞnðr2; r1Þ (3)

with nðr1; r2Þ � hĉ yðr1Þĉ ðr2Þi, ĉ the dipolar field opera-
tor, and L2 the size of the gas. In the superfluid phase, there
is a contribution to the energy arising from the condensa-
tion energy Ec / �2

0=�F which is small for �0 � �F. We

ignore this contribution in the following.
In the 2D limit @!z � �F, all dipoles reside in the

lowest harmonic oscillator level �ðzÞ in the z-direction.
We then have nðr1; r2Þ ¼ �ðz1Þ�ðz2Þn2Dð�Þ with

n2Dð�Þ ¼
Z d2k

ð2�Þ2 fke
ik� ¼ kF

2�~rð�Þ J1½kF~rð�Þ�: (4)

Here, J1ðxÞ is the Bessel function of first order, � ¼ ðx; yÞ,
and ~rð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2=�2 þ �2y2
p

. Evaluating the integrals in (2)
and (3), we find

E dir þ Eex ¼ � 8n22D
3�m

gIð�;�Þ (5)

where

Ið�;�Þ¼
Z 1

0

dv

v2

Z 2�

0
d�ð1�3cos2�cos2�Þ

�
4J21ðtÞ
t2

�1

�

(6)

is a dimensionless function of the Fermi surface deforma-
tion parameter � and the dipole angle �, and t �
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2sin2�þ cos2�=�2

p
. Equations (1), (5), and (6) give

the energy as a function of g, �, and �. For a given
coupling strength g and angle �, �ðg;�Þ is found by
minimizing E. In general, this has to be done numerically.
However, for small Fermi surface deformation �� 1,
we can expand (6) in the small parameter t� v. The
resulting � integrals are straightforward and usingR1
0 dv½4J21ðvÞ=v2 � 1�v�2 ’ �0:9, we obtain

�4 ’ 1þ 1:06gð1� 9
4 cos

2�Þ
1þ 1:06gð1� 3

4 cos
2�Þ : (7)

Note that �< 1 as expected.
Since E / n22D, it is now straightforward to evaluate the

compressibility �ðg;�Þ. The resulting region of the col-
lapse instability is shown in Fig. 2. There is a large region
where the system is stable even though the interaction is

strong (g > 1) and partly attractive [�< arccosð1= ffiffiffi
3

p Þ].
This is most easily understood by ignoring the Fermi

surface deformation (� ¼ 1), which yields �c !
arcsin1=

ffiffiffi
3

p
for g ! 1. In this limit, the interaction energy

dominates, and the gas collapses when the dipole-dipole
interaction is attractive in more than half the x� y plane,

i.e., for �< arcsin1=
ffiffiffi
3

p
. Fermi surface deformation ef-

fects are significant however; in Fig. 3, we show how
�ðg;�Þ deviates substantially from 1 along the critical
line �cðgÞ for collapse.
The stability of the 2D system for a strong, attractive

interaction makes it a promising candidate to observe
superfluid pairing with unconventional symmetry. To in-
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FIG. 3 (color online). The deformation parameter � and the
coupling strength gsðkF; kFÞ defined in (11) for p-wave pairing
along the critical line for collapse �cðgÞ. For g & 0:725 where
there is no collapse, we have evaluated � and gs at � ¼ 0.
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FIG. 2 (color online). The T ¼ 0 phase diagram. Phases are
shown in terms of the interaction g. For weak coupling, g &
0:725, the Fermi pressure stabilizes the system for all angles. For
stronger coupling, there is a critical angle �c below which the
attractive interaction overcomes the Fermi pressure and the gas
collapses. The system is superfluid and stable for �c <�<�s.
The superfluid and normal regions are separated by a quantum
phase transition. For comparison, we also plot as dashed lines the
phase diagram calculated with no Fermi surface deformation
effects (� ¼ 1).
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vestigate this, we solve the effective 2D BCS gap equa-
tion at T ¼ 0, derived from the usual 3D BCS pair-

ing Hamiltonian using ĉ ðrÞ ¼ ĉ ð�Þ�ðzÞ. This ansatz re-
sults in a 2D gap equation in terms of an effective

interaction V2Dð�Þ ¼
R
dz�2

rðzÞVðrÞ, where �rðzÞ ¼
expð�z2=2l2zÞ=�1=4l1=2z with lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=m!z

p
is the lowest

harmonic oscillator wave function for the reduced mass

m=2. Using the rescaled momentum ~k ¼ ð~kx; ~kyÞ ¼
ð�kx; ky=�Þ to describe pairing about the deformed Fermi

surface, the 2D gap equation becomes

�~k ¼ �
Z d2~k0

ð2�Þ2
~V2Dð~k; ~k0Þ �~k0

2E~k0
(8)

with E~k ¼ ð�2
~k
þ�2

~k
Þ1=2, �~k ¼ ~k2=2m�	, and 	 the

chemical potential. ~V2Dð~k; ~k0Þ is the Fourier transform

V2Dðk;k0Þ ¼
Z

d2� sinðk � �ÞV2Dð�Þ sinðk0 � �Þ (9)

of V2Dð�Þ, expressed in terms of the scaled momenta ~k, ~k0;
i.e., ~V2Dð~k; ~k0Þ ¼ V2Dðk;k0Þ. Note that only sine compo-
nents contribute to the Fourier series since the order pa-
rameter is antisymmetric. The Pauli exclusion principle
therefore cancels the short-range r�3 divergence in the
dipole-dipole interaction, making the Fourier transform
(9) finite even in the 2D limit.

Using the expansions�~k ¼ P1
n¼1 �nð~kÞ cos½ð2n� 1Þ��

and ~V2Dð~k; ~k0Þ¼P1
nn0¼1Vnn0 ð~k; ~k0Þcosð2n�1Þ�cosð2n0 �

1Þ�0 in (8), where � is the angle between ~k and the x
axis, we find numerically that Vnn � Vnn0 for n

0 � n and
all angles 0 � � � �=2. This shows that to a very good
approximation, the gap is p-wave, �k ¼ �0 cos�, and we

can replace ~V2Dð~k; ~k0Þ with V11ð~k; ~k0Þ cos� cos�0. Using
this in (8), it reduces to

1 ¼ � 4�

m

Z d2 ~k0

ð2�Þ2
gsð~k; ~k0Þcos2�0

2E~k0
; (10)

where 4�gs=m � V11.
The dimensionless effective pairing interaction gs cor-

responds to the dipole-dipole interaction averaged over the
deformed Fermi surface, weighted by the p-wave symme-
try of the order parameter. After a straightforward but
lengthy calculation, we find

gsðk; k0Þ ¼ gMðk; k0ÞIs½�; �ðg;�Þ�

’ gMðk; k0Þ
�
1� 9

4
cos2�

�
: (11)

Here, Is and M are dimensionless functions given by

Is ¼
Z 2�

0

d�

2�

ð1þ cos2�Þð1� 3cos2��2cos2�
�2cos2�þsin2�=�2Þ

ð�2cos2�þ sin2�=�2Þ3=2 (12)

andMðk; k0Þ ¼ k02
2kFk

½ð1þ xÞEðxÞ þ ðx� 1ÞKðxÞ� for k < k0

and k0lz � 1; for k0 < k, one simply swaps k and k0. KðxÞ
and EðxÞ are the complete elliptic integrals of first and

second kind, respectively, and x ¼ k2=k02. We have
MðkF; kFÞ ¼ 1. For k0lz * 1, one has Mðk; k0Þ / kðk0lzÞ�1

showing that the 2D effective interaction has a high energy
cutoff for k0lz � 1. The last line in (11) is exact for � ¼ 1.
We now analyze the T ¼ 0 gap Eq. (10) as the dipole

angle� is adjusted. SinceMðk; k0Þ> 0 for all k, k0, the gap
�k is zero unless Isð�; �Þ< 0. The resulting superfluid
region found by evaluating the sign of Is is shown in Fig. 2.
Numerically, we find that the Fermi surface deformation
has little effect on the effective interaction for pairing as
can be seen in Fig. 2. Ignoring Fermi surface deformation
effects, we find from (11) that the system is superfluid for
�<�s ¼ arccosð2=3Þ. The critical angle �s for super-
fluidity is therefore to a good approximation independent
of the interaction strength g and is purely determined by
geometry.
Crucially, as� decreases from�=2, the system becomes

unstable toward pairing before the gas collapses, i.e.,
�sðgÞ>�cðgÞ, and there is a significant region in the
phase diagram where the system is superfluid yet stable.
Because the p-wave pair wave function is predominantly
oriented along the x axis where the interaction is maxi-
mally attractive, the effective pairing interaction (11) is
stronger than the ‘‘bare’’ 2D interaction in (5) that deter-
mines the collapse instability. For this reason, even for
strong interactions, there remains a window �s <�<
�c where the system is a stable superfluid.
To examine the strength of the pairing interaction fur-

ther, we make use of the fact that pairing occurs primarily
at the Fermi surface, and in Fig. 3, we plot gsðkF; kFÞ from
(11) along the critical line �cðgÞ for collapse. This gives
the largest possible attractive pairing interaction, before the
system collapses. We see that the effective pairing inter-
action increases monotonically with g and can become
very large. Thus, one can produce a strongly paired gas
without the system collapsing. This should be compared
with the 3D trapped case where recent results indicate that
the system is superfluid and stable only in a narrow region
in phase space where the pairing is relatively weak [9,10].
Solving the gap equation in the weak coupling regime

yields �0ð�Þ ¼ �F4e
�1=2

ffiffiffiffi
�

p
e1=gs for gs < 0 (i.e., �<

�s) with � ¼ k2max=k
2
F an ultraviolet cutoff. This shows

that the superfluid phase transition is infinite order in the
sense that @n��0j�s

¼ 0 for all n.

At finite temperatures, long-range order is destroyed by
phase fluctuations in 2D, and �kðT > 0Þ ¼ 0. The super-
fluid density remains finite, however, describing a
Berezinskii-Kosterlitz-Thouless (BKT) superfluid of
bound vortex-antivortex pairs [11]. The critical tempera-
ture TBKT for this phase is the temperature at which the free
energy of a single unbound vortex vanishes [12],

TBKT ¼ �@2

8m2kB
��s: (13)

Here, ��s � ð�s;xx þ �s;yyÞ=2 is the average of the diagonal
components of the superfluid mass density tensor �s;ij. In
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estimating the energy E ¼ 1
2

R
d2r�s;ijvivj 	 �@2

4m2 lnðLaÞ ��s

of a single vortex of radius a in a 2D box with sides of
length L, we have assumed that the contribution from the
off-diagonal component �s;xyvs;xvs;y due to the anisotropy

of the vortex velocity field [13] is small. Generalizing the
usual expression for �s;ij [14] to allow for the effects of

Fermi surface deformation, one finds

�s;ij ¼ mn
ij � �

4

X
~k

sech2
�
�E~k

2

�
~ki~kj: (14)

As shown in the inset of Fig. 4, rotational symmetry is
broken by the external field, and �s;xx > �s;yy. The y com-

ponent of the superfluid density tensor is suppressed since
the quasiparticle spectrum is gapless in the direction per-
pendicular to the field.

Since ��s depends on T, (13) has to be solved self-
consistently. We determine ��sðTÞ from (14) using a
T-dependent gap �kðTÞ calculated by including the usual
Fermi functions in the gap equation. The critical tempera-
ture determined this way is plotted in Fig. 4 for g ¼ 0:2.
We also plot the mean-field transition temperature T

obtained from the gap equation. Phase fluctuations sup-
press TBKT below T
. For weak coupling, TBKT ’ T
. Since
T
 / ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�F@!z

p
and n2D / �F, we have TBKT / n1=22D . This

suggests that one can cross the critical temperature by
adiabatically expanding the gas keeping T=�F constant

so that T=TBKT / n1=22D decreases [15]. For stronger inter-

actions, TBKT quickly approaches its upper bound
�@2

8m2kB
� ¼ TF=16 / n2D.

Let us consider the experimental requirements for ob-
serving the effects discussed in this Letter. Recently, a gas
of 40K� 87Rb polar molecules was created with a density
of n� 1012 cm�3 at a temperature T=TF * 2 [5]. These

molecules have dipole moments of 0.57 Debye in their

vibrational ground state. Writing g ’ 2~d2~a�1NA=100,

where ~d ¼ d=1 Debye is the dipole moment in Debyes,
~a ¼ a=1 	m is the interparticle spacing measured in 	m,
and NA ¼ m=mu is the mass of the dipoles in atomic mass
units, the experimental parameters of Ref. [5] give g ’ 0:8.
Also, the creation of 2D systems has already been achieved
for bosons [16]. The observation of the effects discussed in
this Letter is therefore within experimental reach once
further cooling has been achieved.
In conclusion, we studied the quantum phases of a

dipolar Fermi gas in 2D aligned by an external field. We
demonstrated that by partially orienting the dipoles into the
2D plane, they can experience a strong p-wave pairing
attraction without the system collapsing. This makes the
system a promising candidate to study quantum phase
transitions and pairing with unconventional symmetry.
We also analyzed the BKT transition to the normal state
at nonzero T.
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FIG. 4 (color online). Berezinskii-Kosterlitz-Thouless (TBKT)
and mean-field (T
) transition temperatures plotted as functions
of� for g ¼ 0:2. Inset: Temperature-dependence of the diagonal
components of the superfluid density for � ¼ 0 and g ¼ 0:2.
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