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A kinetic theory for spin plasmas is put forward, generalizing those of previous authors. In the model,

the ordinary phase space is extended to include the spin degrees of freedom. Together with Maxwell’s

equations, the system is shown to be energy conserving. Analyzing the linear properties, it is found that

new types of wave-particle resonances are possible that depend directly on the anomalous magnetic

moment of the electron. As a result, new wave modes, not present in the absence of spin, appear. The

implications of our results are discussed.
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In recent years, there has been a rapidly growing interest
in the quantum properties of plasmas [1–8]. This has been
motivated by applications in, for example, plasmonics
[9,10], quantum wells [11], and ultracold plasmas [12].
Common to such applications are rather extreme parame-
ters, compared to most laboratory and space plasmas. In
particular, the plasma densities are considered to be very
high and/or the temperatures are correspondingly low. For
astrophysical plasmas, it is also known that strong mag-
netic fields [13] may lead to various quantum effects being
important. However, a recent work [8] shows that the spin
properties of electrons can be important even in high
temperature plasmas of modest density and magnetic field
strength.

In the present Letter, we will put forward a more elabo-
rate kinetic model, where the electrons are described using
a distribution function in an extended phase space, includ-
ing also variables due to the spin orientation. This model is
an extension of a kinetic model used by Refs. [14,15],
where we here also include the magnetic dipole force
associated with the spin. As a consequence, the magnetic
dipole energy also contributes to the energy conservation
law which is derived from Maxwell’s equations combined
with the spin-kinetic model. This system is then used to
study linear waves in a homogenous magnetized plasma.
The analysis shows that the inclusion of spin gives rise to
new phenomena not present within the usual Vlasov
model. This also holds for the high temperature regime,
where quantum effects are normally suppressed. It turns
out that effects of the anomalous magnetic moment are
crucial. In particular, new wave modes appear with fre-
quencies ! � ðg=2� 1Þ!c, where g ’ 2:002 319 is the
electron spin g factor and !c is the electron cyclotron
frequency. Furthermore, new types of wave-particle inter-
action can take place that involve the electron spin state.
We stress that none of these effects can be seen within
quantum fluid models [1–8].

Here we are interested in effects due to the electron spin
that may survive even when the macroscopic variations
occur on a scale longer than the thermal de Broglie wave-
length, which is a scale normally expected to imply clas-

sical behavior [16]. In particular, wewill by spin here mean
the semiclassical properties of the electron due to its
magnetic moment and thus will not take into account,
e.g., commutation relations. As a starting point, let us
consider the evolution equations for momentum and spin
resulting from the Pauli Hamiltonian

H ¼ �ð@2=2m2Þ½r � ðiqA=@Þ�2 þ�e� �Bþ q�; (1)

where q ¼ �e ¼ �jej and m are the electron charge and
mass, respectively, A and � are the vector and scalar
potential, respectively, 2�@ is the Planck constant, �e ¼
�ðg=4Þe@=m is the electron magnetic moment, and � is
the vector consisting of the Pauli spin matrices. Using
dF=dt ¼ @F=dtþ ð1=i@Þ½F;H�, where F is any operator,
we obtain in the Heisenberg picture

_v ¼ ðq=mÞðEþ v�BÞ þ ð2�e=m@Þrðs � BÞ; (2a)

_s ¼ ð2�e=@Þðs�BÞ; (2b)

where s is the spin operator, E and B are the electric and
magnetic fields, respectively, v � _x, and the overdot de-
notes the total time derivative. Next, letting the number of
particles with the expectancy value of the velocity between
v and vþ dv and spin vector between s and sþ ds be
given by dN ¼ fdvds, we search for an evolution equation
for f. Noting that rs � ðs� BÞ ¼ 0, particle conservation
implies that the phase space density is conserved along
fluid elements propagating in the extended phase space,

i.e., _fðr; v; s; tÞ ¼ @tfþ _r � rfþ _v � rvfþ _s � rsf ¼ 0.
Thus, with Eqs. (2),

@tfþv �rfþ
�
q

m
ðEþv�BÞþ2�e

m@
rðs �BÞ

�
�rvf

þ2�e

@
ðs�BÞ �rsf¼0: (3)

For the concept of a distribution function in phase space to
be well defined, the delocalization of the wave function of
the particles cannot be too large. To establish the limit of
validity, we therefore would like to connect (3) directly to
the Pauli equation. Studying the one-particle equation
i@@t�� ¼ H��, where �� is the electron wave function
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and the subscript � is a particle index, the Pauli equation
can be transformed into fluidlike variables by the trans-
formation �� ¼ ffiffiffiffiffiffi

n�
p

expðiS�=@Þ’�, where ’� is a unit

normalized two-spinor. Defining v� ¼ ð1=mÞ�
ðrS� � i@’y

�r’�Þ � ðq=mÞA and s� ¼ ð@=2Þ’y
��’�,

the Pauli equation can be rewritten as evolution equations
for n�, v�, and s� [5], which have a fluidlike form,
although we are still dealing with single particle equations.
These equations resemble Eqs. (2a) and (2b) above but
contain several other terms due to the difference of a two-
spinor from a classical particle with a magnetic moment. In
particular, a forcelike term that arises in this way, even in
the absence of spin, is the so-called Bohm potential which
results in a force FB ¼ ð@2=2mÞr½ðr2 ffiffiffiffiffiffi

n�
p Þ= ffiffiffiffiffiffi

n�
p �.

Assuming a characteristic (thermal) energy of the particles,
the effect of the Bohm potential is seen to be small,
provided the gradient scale length is longer than the ther-
mal de Broglie wavelength [16]. Similarly, quantum cor-
rections to the Vlasov equation due to wave function
dispersion [16] have been shown to be small whenever
spatial gradients are long compared to this quantum scale.
Furthermore, the spin properties induces higher order force
terms Fj ¼ ð1=mÞ@i½ð@jskÞð@iskÞ� [17] that are small (com-

pared to the convective derivative), provided the gradient
scale length is longer than the thermal de Broglie wave-
length. Finally, higher order terms in the spin evolution
equation [17] resulting from the Pauli equation can be
neglected when the same condition is fulfilled. The kinetic
equation put forward here agrees with the one used by
Refs. [14,15], except that their equation did not contain the
magnetic dipole force. This term is often small as com-

pared to the Lorentz force, but we will show that it can still
be important.
A complete model is formed by combining Eq. (3) with

Maxwell’s equations, where the current density is

j ¼ jfree þr�M

¼ X
i

�
qi
Z

vfid�þ 2�i

"
r�

Z
sfid�

�
: (4)

The sum is over particle species i with charge qi, and the
last term is the magnetization current due to the spin.
Normally, the spin contribution from the ions can be
neglected compared to that of the electrons, due to their
smaller magnetic moment. In what follows, we will there-
fore include only the electron physics and drop the sum
over species. The integration d� is made over three ve-
locity variables and two spin degrees of freedom. Since the
spin vector is constructed from the expectancy value of the
spin operator, it has a fixed length jsj ¼ @=2. The spin
orientation will be described using spherical coordinates.
From this model it is straightforward to show that the
energy conservation law @tW þr � P ¼ 0 is fulfilled,
with the energy densityW and energy flux P given byW ¼
ð"0E2 þ��1

0 B2Þ=2� B �Mþ Rðmv2=2Þfd� and P¼
E� ð��1

0 B�MÞ þR½ðmv2=2Þv� ð2�e=@ÞvðB � sÞ�fd�,

respectively. The last term in the energy flux expression
represents the convection of magnetic dipole energy.
Next, we will use Eq. (3) to study linear waves in a

magnetized plasma. Dividing the variables as f ¼
f0ðv; sÞ þ f1ðr; t; v; sÞ, and B ¼ B0 þ B1ðr; tÞ, the linear-
ized Vlasov equation can be written

�
@tþv �rþ q

m
ðv�B0Þ �rvþ2�e

@
ðs�B0Þ �rs

�
f1¼� q

m
ðEþv�B1Þ �rvf0�2�e

@

�rðs �B1Þ
m

�rvþðs�B1Þ �rs

�
f0:

(5)

Before proceeding further, we will for definiteness specify
the unperturbed equilibrium distribution f0. In thermody-
namic equilibrium and for a large chemical potential
(which applies for n�3

dB � 1, where �dB is the thermal
de Broglie wavelength and n is the electron number den-
sity), the Fermi-Dirac equilibrium distribution reduces to

f0¼ n0
4�

�
m

2�kBT

�
3=2

exp

�
�ðmv2=2þ2�es�B0=@Þ

kBT

�
: (6)

This results in a zero order magnetization M0 ¼
n0�e�ð�eB0=kBTÞ, where � is the Langevin function, T
is the temperature, n0 is the equilibrium density, and kB is
the Boltzmann constant. Next, letting B0 ¼ B0ẑ, introduc-
ing cylindrical coordinates (v?, ’v, vz) in velocity space
and spherical coordinates (’s, �s) in spin space, noting that
the term ðv�B1Þ � rvf0 in (5) can be dropped when the
unperturbed distribution function is Maxwellian, and
Fourier analyzing, Eq. (5) is written

�
ið!� k � vÞ þ!c

@

@’v

þ!cg

@

@’s

�
~f1 ¼

�
q

m
~Eþ 2�e

m@
rðs � ~B1Þ

�
� rvf0 þ 2�e

@
ðs� ~B1Þ � rsf0; (7)

where we have introduced the frequencies !c ¼ qB0=m
and !cg ¼ 2�eB0=@. Note that !c < 0 and that !cg ¼
ðg=2Þ!c. Equation (7) can be solved by an expansion of ~f1
in the eigenfunctions c að’v; v?Þ ¼ ð2�Þ�1=2 �
exp½�iða’v � k?v? sin’v=!cÞ�. Thus, we let

~f 1 ¼
X
a;b

gabðv?; vz; �sÞc að’v; v?Þ expð�ib’sÞ; (8)

where a ¼ 0;�1;�2; . . . and b ¼ �1; 0; 1. Using the or-
thogonality properties

R
2�
0 c ac

	
bd’v ¼ �ab, we find
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ið!� kzvz � a!c � b!cgÞgab ¼ Iabðv?; vz; �sÞ; (9)

with

Iab¼
Z 2�

0

Z 2�

0

��
q

m
~Eþ2�e

m@
rðs � ~B1Þ

�
�rvf0

þ2�e

@
ðs� ~B1Þ �rsf0

�
c 	

aexpðib’sÞd’vd’s: (10)

A useful relation when trying to write results in a more
explicit form is the Bessel expansion

c að’v; v?Þ ¼ 1ffiffiffiffiffiffiffi
2�

p X
b

Jb

�
k?v?
!c

�
exp½iðb� aÞ’v�: (11)

Here it is seen that the results are much simplified in the
limit where k?vth=!c is small (where we can estimate v?
with the thermal velocity vth), but as is well known (see,
e.g., Ref. [18]), in general, the conductivity tensor compo-
nents turns into sums over Bessel functions. The conduc-
tivity tensor �ij, defined by ji ¼ �ijEj, is found from Eq.
(4) by expressing the magnetic field in terms of ~E and then
solving for ~f1 in terms of ~E using the eigenfunctions as
outlined above. It is illustrative to divide the conductivity
tensor into two contributions �ij ¼ �ij

free þ �ij
magn due to

the free current and the magnetization current. Further-
more, �ij

free could be divided further into contributions due
to the Lorentz force and contributions in Iab that contain
spin which give the classical and spin parts of �ij

free.
However, we will not present the general expressions for
�ij here, as these results are complicated and need exten-
sive analysis for a useful interpretation. Instead, we focus
on special cases in order to point out two of the main new
features resulting from the spin.

First, the factor (!� kzvz � a!c � b!cg) in (9) re-

veals that the standard wave-particle resonances are ex-
tended to involve the spin forces. The spectrum of
resonances is thereby much extended. In particular, the
combination a ¼ 1, b ¼ �1 gives a resonant velocity at
vz ¼ ð!��!cÞ=kz, where we have introduced �!c ¼
ðg=2� 1ÞeB0=m. The physics of this resonance is slightly
more complicated than the well-known resonances with
b ¼ 0. In particular, it does not occur for strictly parallel
propagation to B0, since the coefficient I1�1 in (10) be-
comes zero in that limit. Furthermore, inclusion of the
spatial variations of the wave perpendicular to the mag-
netic field must include a finite argument of the Bessel
functions in (11). This means that the spin resonances
depend on finite Larmor radius effects. Moreover, integra-
tion over ’s destroys any contribution from this resonance
in the free current density, and thus only the magnetization
current survives. Still it is clear that such resonances can be
the dominating wave-particle damping mechanism, in case
the wave frequency is of the order of a few thousands of the
cyclotron frequency.

The second point to be pursued in more detail is that the
spin gives rise to new wave modes not present in the
standard Vlasov picture. First, we assume that the ions
are immobile, constituting a neutralizing background.

Next, we consider the limit of exactly perpendicular propa-
gation and thus let k ¼ k?x̂. In this case, modes with the

approximate polarization ~E ¼ ~Ezẑ and ~B ¼ ~Byŷ ¼
ðk? ~Ez=!Þŷ are possible, provided �xy and �xz are suffi-
ciently small, which can be verified a posteriori (see, e.g.,
Ref. [18]). From Eqs. (8)–(10) the distribution function is
expressed in terms of the electric field that together with
(4) determines the conductivity tensor components. For the
given polarization, only the �zz component is needed.
Furthermore, for ! 
 j!cj, terms with coefficients a �
b in (8) will be smaller than those with a ¼ b, and thus
only the latter are kept. Carrying out the ’s and ’v

integrations [using (11)], the z component of Ampere’s
law gives

!2 ¼ k2c2 þ!2
p

Z �
J20ðk?v?=!cÞ þ k2@2�!csin

2�s
4mð!��!cÞkBT

� ½J21ðk?v?=!cÞ�
�
f0d�; (12)

where !p ¼ ðn0e2=	0mÞ1=2 is the plasma frequency. If we

drop the term proportional to J21 due to the spin in (12), we
have the usual ordinary mode, where higher terms in the
sum over Bessel functions have been dropped, due to the
condition ! 
 j!cj. Typically, the second term due to the
spin is a small correction when the wavelength is longer
than the thermal de Broglie wavelength. However, it can
clearly be dominant for frequencies close to the resonance
! � �!c. In Fig. 1, numerical solutions of the dispersion
relation is plotted for different parameters 
 and � close to
this resonance, where 
 ¼ @

2!2
c=m

2v4
t , � ¼ !2

cc
2=!2

pv
2
t ,

and vt ¼ ðkBT=mÞ1=2. To some extent these new solutions
resembles the well-known Bernstein modes (see, e.g.,
Ref. [18]). However, unless the ratio 
=� is larger than
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FIG. 1. The normalized frequency � ¼ !=�!c plotted
around �!c as a function of the normalized wave number K ¼
kvt=!c for different parameter values of the parameters 
 ¼
@
2!2

c=m
2v4

t and � ¼ !2
cc

2=!2
pv

2
t . The upper panel represents

possible laboratory values (for example, B0 ¼ 6:0 T, T ¼
104 K, and n ¼ 1022 cm�3 correspond to 
 ¼ 10�6 and � ¼
10�2, relevant for laser-plasma interaction experiments), while
the lower are representative for extreme astrophysical environ-
ments (for example, B0 ¼ 6:0� 106 T, T ¼ 1010 K, and n ¼
3� 1021 cm�3 correspond to 
 ¼ 1 and � ¼ 10�3, relevant for
a thick hot accretion disk surrounding a pulsar).
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unity (corresponding to a high density low temperature
plasma), the deviation from the resonant frequency will
be small. For an unperturbed distribution different from the
thermodynamic equilibrium expression, the shift from the
precise resonance can be much enhanced, since the two last
terms in (10) contributing to I1�1 almost cancel (the terms
match as g=2� 1) for f0 given by (6) as considered here
but not for a general equilibrium distribution. Furthermore,
it should be noted that this approximate cancellation in
(10) does not occur for general angles of propagation. For
arbitrary angles of propagation, the denominator!� �!c

of our spin term is replaced by !� kzvz � �!c. It is
interesting to note that the sign of this contribution is de-
termined by the last term in (10). In particular, in case the
unperturbed distribution f0 has a larger fraction of particles
in the higher energy spin state, @f0=@sz changes sign,
which should consequently change the sign of the imagi-
nary part of the dispersion relation, leading to instability
rather than wave-particle-spin damping. However, more
analysis is needed to definitely confirm this conjecture.

In the present Letter, we have put forward a Vlasov-type
equation, in a phase space extended to include the spin
degrees of freedom. This equation extends a previous
equation due to Refs. [14,15], by including the magnetic
dipole force associated with the spin, and can be viewed as
a semiclassical limit of the Pauli equation. Including the
spin-magnetization current in Maxwell equations, the re-
sulting system is shown to be energy conserving. To gain
some understanding of the model, we have outlined the
theory for linear wave propagation in magnetized plasmas
and demonstrated the appearance of new wave modes due
to the spin. These wave modes depend on resonances
associated with both the orbital and the spin gyration and
are much different from the well-known spin waves in
ferromagnetic materials [19].

It is of interest to discuss the connection between our
spin-kinetic model and the ordinary Vlasov equation.
Relating E and B through Faraday’s law, we see that the
relative strength of the spin force is k2@=m!. This parame-
ter is often small, which explains why the classical Vlasov
equation in many cases is a very good approximation. On
the other hand, using this parameter, it is easy to under-
estimate the significance of the spin force. First, wave-
particle resonances and/or new wave modes associated
with resonances, as the one described above, may enhance
the significance of spin effects. Second, when the electric
field is perpendicular to B0 and the wave frequencies are
low, the E�B motion of electrons and ions gives a zero
current to leading order in !=!c, whereas similar cancel-
lations do not occur for the magnetic dipole force.
Furthermore, even if the electric field is perpendicular to
B0, the dipole force may have a parallel component leading
to a large current in this direction.

The exploration of Eq. (3) is a very rich problem.
Besides the more obvious generalization to a complete
linear theory, including arbitrary angles of propagation,
there is a large set of nonlinear problems that should be

studied. The results in Ref. [8] indicate that the significance
of the spin force can be increased in the nonlinear regime
as compared to the linear one, when the spin dependence of
the ponderomotive force can separate particles of different
spin. Finally, it should be stressed that the current model is
intended for the ’’weak quantum’’ regime where the char-
acteristic length scale is longer than the thermal de Broglie
wavelength and the Zeeman energy is smaller than the
thermal energy. A very interesting problem is generaliza-
tions to the regime where the Zeeman energy is compa-
rable or larger than the thermal energy. For such
parameters, found in astrophysical settings, effects such
as Landau quantization [20] will enter the picture.
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