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We predict a novel flow regime in liquid metals under the influence of a magnetic field. It is

characterized by long periods of nearly steady, two-dimensional flow interrupted by violent three-

dimensional bursts. Our prediction has been obtained from direct numerical simulations in a channel

geometry at low magnetic Reynolds number and translates into physical parameters which are amenable

to experimental verification under laboratory conditions. The new regime occurs in a wide range of

parameters and may have implications for metallurgical applications.
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Liquid metals interact with magnetic fields under vari-
ous circumstances ranging from electromagnetic flow con-
trol [1] and electromagnetic flow measurement [2,3] to the
generation of Earth’s magnetic field [4] and the laboratory
studies of the magnetorotational instability [5]. It is widely
believed, especially in the community dealing with metal-
lurgical applications, that a magnetic field always damps
turbulence and helps to reduce undesired velocity fluctua-
tions. In the present Letter we show that this view is an
oversimplification not always agreeing with reality. We
predict a novel flow regime, referred to as large-scale
intermittency (LSI), where the application of a magnetic
field to the flow of a liquid metal in a channel leads to
repeating violent transitions between two-dimensional
(2D) states, in which turbulence is fully suppressed, and
fully turbulent three-dimensional (3D) states. Similar in-
termittent dynamics was detected in two earlier studies of
highly idealized flows: forced turbulence in a periodic box
[6] and inviscid flow in a triaxial ellipsoid [7]. The channel
configuration considered in the present Letter is the first, in
which realistic flow conditions are approached by taking
into account the effects of solid walls, viscosity, and mean
shear.

In the following, we assume that the magnetic Reynolds
number Rem is small, which applies to practically all
industrial and laboratory flows of liquid metals. This al-
lows us to employ the quasistatic approximation, whereby
the induced magnetic field is negligibly small in compari-
son with the imposed field and adjusts instantaneously to
the velocity fluctuations.

An obvious effect of a static magnetic field on the flow
of a liquid metal is Joule dissipation of the induced cur-
rents, which provides an additional mechanism of flow
suppression by conversion of its kinetic energy into heat.
Moreover, the flow can become anisotropic or even 2D.
This can be seen from the rate of Joule dissipation of a
Fourier velocity mode ûðk; tÞ, which is �ðkÞ ¼

�B2��1jûj2cos2� [6,8], where � is the angle between
the imposed magnetic field B and the wave number vector
k, � is the conductivity and � is the density of the liquid.
Proportionality to cos2� means that � increases from zero
at k?B to the maximum for modes with k k B. The
magnetic field tends to eliminate velocity gradients and
elongate the flow structures in the direction of the magnetic
field lines. The flow becomes axisymmetrically anisotropic
or, if the magnetic field is sufficiently strong, 2D with all
variables uniform in the direction of the magnetic field [9].
Similar anisotropic behavior has also been noted for mag-
netohydrodynamic turbulence with higher Rem, in particu-
lar, with magnetic Prandtl numbers Pm ¼ Rem=Re� 1
[10,11].
Without reference to a specific flow geometry, the LSI

may evolve according to the following scenario. Under the
action of the magnetic field, an initially 3D flow evolves
into a pattern of nearly 2D structures. The flow gradients
along the magnetic field are very weak in this state, so the
Joule dissipation decreases to nearly zero. If, however, the
2D state is not a stable attractor of the Navier-Stokes
equations and the magnetic field is not strong enough to
completely suppress 3D instabilities, perturbations grow
and destroy the 2D structures. The flow enters a 3D turbu-
lent state and the process repeats itself. This scenario has
far-reaching implications for specific flows and for
low-Rem magnetohydrodynamics (MHD) in general. The
flows acquire properties unforeseeable under statistical
equilibrium assumptions for MHD turbulence, whereby
the flow is either nearly isotropic, statistically steady an-
isotropic, or 2D depending on the strength of the magnetic
field [8]. The existence of intermittent regimes relates to
the fundamental question of realizability of purely 2D
states under the action of a magnetic field [7]. The phe-
nomenon is also of interest for the general theory of hydro-
dynamic instability, bifurcations, and transition to
turbulence in parallel shear flows. The effect of the mag-
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netic field leads to new, unexpected roles of spanwise
Tollmien-Schlichting (TS) modes and streamwise streaks,
the main agents of transition in ordinary hydrodynamics
[12].

In the present Letter we consider pressure-driven flow in
a plane channel. The imposed magnetic field is uniform
and oriented in the spanwise direction, i.e., parallel to the
walls and orthogonal to the flow. The nondimensional
governing equations and boundary conditions for the ve-
locity u and the electric potential � are

@u

@t
þ ðu � rÞu ¼ �rpþ 1

Re
r2uþ Ha2

Re
ðj� eyÞ

j ¼ �r�þ u� ey; r2� ¼ r � ðu� eyÞ;

r � u ¼ 0; u ¼ v ¼ w ¼ @�

@z
¼ 0 at z ¼ �1;

where x, y, and z coordinates are in the streamwise, span-
wise, and wall-normal directions, respectively. The pa-
rameters are the hydrodynamic Reynolds number

Re � UL��1 and the Hartmann number Ha �
BLð�=��Þ1=2, with L and U being the half-width of the
channel and the center line velocity of the Poiseuille para-
bolic velocity profile.

The problem is solved for two computational domains of
dimensions 2�� 4�� 2 and 8�� 4�� 2 in the x, y, z
directions using direct numerical simulation (DNS) with a
Fourier-Chebyshev method and periodic boundary condi-
tions for x and y [13]. The numerical resolution is 643 and
256� 642 collocation points for the small and large do-
mains, respectively. The volume flux per span width re-
mains constant during the computations, which are
conducted at Re ¼ 8000, i.e., above the threshold Rec �
5772 of the linear instability. The velocity perturbation is
defined as u0 ¼ u� hui, where hui is the mean velocity
obtained by horizontal averaging over the computational
domain. In the LSI cycle discussed below, the amplitude of
u0 decreases to the level of machine round-off. To remove
the resulting ambiguity and to mimic the noise in actual
flows, white noise with the amplitude 10�6 relative to the
mean flow is added at every time step. The initial condi-
tions correspond to purely 2D flow [14]. Other initial
conditions produced identical behavior after transients.

The spanwise magnetic field does not interact with the
base flow or with any other 2D flow uniform in the span-
wise direction. This, in particular, includes the spanwise-
independent TS modes of linear instability, which implies
that the primary linear instability (but not the secondary 3D
breakdown of TS modes) is insensitive to the presence of
the magnetic field. Above Rec, the phase space for the
nonmagnetic channel flow contains an attractor of 3D
turbulence and two unstable equilibria: the Poiseuille so-
lution and a 2D channel flow solution, which takes the
form of a steady traveling wave in the short domain and of
a chaotic wave train in the longer domain [14]. In the

presence of magnetic field, the same states exist but, as
found in our computations, their stability and attraction
basins change. When the magnetic field is weak (Ha & 40
at Re ¼ 8000), a solution with arbitrary initial conditions
converges to a 3D turbulent state, which has pronounced
anisotropic properties considered elsewhere [15,16]. By
contrast, at sufficiently strong magnetic fields (Ha * 160
at Re ¼ 8000), the 2D channel flow solution [14] becomes
the only stable attractor.
The focus of this Letter is on intermediate values of Ha,

for which intermittency appears as a phase trajectory loop-
ing between base flow and turbulent state. Results for
Ha ¼ 80 and the short computational domain are pre-
sented, although intermittency with qualitatively similar
basic characteristics was observed at other intermediate
values of Ha and in the longer domain. The energy of
velocity perturbations normalized by the energy E0 of the
basic flow is shown in Fig. 1 as a function of time. As can
be seen in the inset, soon after the start, the flow settles into
an intermittent behavior. Long periods, during which the
perturbations are negligibly weak, are interrupted by short
periods of strong perturbations. The 2D channel flow so-
lution [14] is never approached. The intermittency events
form a regular pattern with approximately constant periods
between the bursts and without noticeable tendency for
decay or growth of burst intensity.
The flow transformation during one LSI cycle is pre-

sented in Figs. 1–3. Four stages can be identified. During
the growth stage marked by (a), the perturbation energy is
almost exclusively in the spanwise-uniform modes with
wave number ky ¼ 0. It can be seen in Fig. 1 that the

FIG. 1 (color online). Evolution of the perturbation energy E0
during one intermittency cycle. The total (3D) energy and the
energy of 2D spanwise-independent and streamwise-
independent perturbations are depicted. For comparison, the
perturbation energy of 2D channel flow [14] is shown. Letters
(a) to (d) indicate the flow stages illustrated in Fig. 2. Time is
nondimensional in convective units L=U. Inset: Evolution of
perturbation energy during the entire run.
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energy of such modes shown by the long-dashed curve
constitutes nearly the entire energy of perturbations. This
conclusion is confirmed by 2D energy power spectra
Eðkx; kyÞ (not shown) and by the fact that the Joule dis-

sipation rate shown by the short-dashed line in Fig. 3
remains at the level corresponding to dissipation of added
noise. Flow fields, visualized by the streamwise velocity
component in Fig. 2(a), indicate that the growth phase is
dominated by the classical TS mode, i.e., the exponentially
growing solution of the linear stability problem of the basic
flow. The growth rate 0.010 752 measured from the DNS

results [branch (a) in Fig. 1] agrees with 0.010 976 obtained
using the linear stability code [13].
After reaching finite amplitudes, the TS mode undergoes

secondary instability to 3D perturbations and disintegrates
to form a turbulent state illustrated in Fig. 2(b). The
identification of the state as turbulent is supported by quick
population of the available kx and ky wave numbers in the

energy power spectrum. The Joule dissipation rate in-
creases sharply starting at the moment of the first 3D
instability of the TS mode and eventually becomes com-
parable with the rate of viscous dissipation. This leads to
strong suppression of the energy of perturbations and
initiates the stage of decay.
The decay stage marked by (c) in Figs. 1 and 2 is

characterized by counterintuitive and somewhat surprising
behavior. Considering the nature of Joule dissipation, one
could expect that the spanwise TS modes unaffected by the
magnetic field would survive the suppression. This does
not happen. A pattern of streamwise streaks illustrated in
Fig. 2(c) develops as a dominant feature of the velocity
perturbation field during the decay stage. The nearly
streamwise-independent character of the flow is illustrated
in Fig. 1, where the short-dashed curve corresponding to
the energy of purely streamwise (with kx ¼ 0) perturba-
tions practically coincides with the curve of the total
perturbation energy. The conclusion is also supported by
the 2D energy spectra. The flow organization as a system of
streaks, i.e., zones of enhanced or reduced streamwise
velocity is visible in Fig. 2(c) and confirmed by the fact
that during this stage the energy of the streamwise velocity
component hu02i is at least 2 orders of magnitude larger
than the energy of the spanwise and wall-normal
components.
We only have a simplistic explanation of the dominance

of streamwise streaks during the decay stage. It is based on
the presence of coherent and relatively strong streamwise
streaks as a universal feature of turbulent channel flow and,
in general, of turbulence with mean shear. It was shown in
our recent simulations [16] that this feature persists in the
presence of a moderate spanwise magnetic field (e.g., at
Re ¼ 10 000 and Ha ¼ 30). Moreover, the magnetic field
renders the streaks more coherent and somewhat larger in
size in all three directions by suppressing small-scale 3D
perturbations. Visual indication of existence of streaks in
the turbulent phase of the intermittent flow can be seen in
Fig. 2(b). We can assume that spanwise TS modes are
completely destroyed in the turbulent flow, their energy
being drained by instabilities into 3D perturbations, while
the streaks form. As the 3D fluctuations are suppressed by
the magnetic field, the streaks of largest spanwise wave-
length [see Fig. 2(c)] survive as least susceptible to Joule
dissipation.
While the streamwise streaks dominate the decaying

perturbation field, new spanwise modes form from the
background noise. They prepare the last stage of the inter-
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FIG. 3 (color online). Evolution of viscous and magnetic dis-
sipation rates. Total viscous dissipation (of perturbations and
basic flow), viscous dissipation of perturbations only, and Joule
dissipation of perturbations are shown (normalized to the dis-
sipation �0 of the basic flow.

FIG. 2 (color online). Flow evolution during one cycle of the
intermittent process. Four stages indicated in Fig. 1 are shown
using isosurfaces of streamwise velocity perturbations normal-
ized by corresponding rms values. (a) growing 2D-spanwise TS
mode, (b) 3D turbulent state at the maximum of perturbation
energy, (c) decaying flow dominated by streamwise streaks,
(d) disappearance of the streamwise streaks and return of the
growing TS waves.
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mittency cycle marked by (d) in Figs. 1 and 2. It separates
the decay and growth phases and is characterized by com-
parable energies of the growing TS mode and the decaying
streaks. The total perturbation energy and the rate of
viscous dissipation assume the lowest values during this
stage. A change in noise level affects the initial amplitude
of the TS modes, whereby the decay phase of the streaks
and the growth phase of the TS mode will be correspond-
ingly shortened or lengthened. The typical duration of the
LSI cycle was longer when round-off errors were the only
noise source in our simulations.

For a long fraction of the LSI cycle the flow remains
close to the Poiseuille flow, which provides the lowest
friction drag for hydrodynamic channel flow. The drag
experienced by 3D turbulent flow and purely 2D flow
realized at lower and at higher Ha, respectively, are both
on average substantially higher than for the LSI. This
nonmonotonic drag reduction can be seen in Fig. 4, which
shows the mean pressure gradient PX needed to drive the
flow.

The spanwise domain size Ly could have a potentially

significant effect on the LSI. Flow structures with longer
spanwise wavelength experience weaker Joule dissipation,
and should therefore persist up to larger values of Ha. The
threshold for LSI could therefore be shifted to higher Ha
when Ly is increased. This question and the asymptotic

behavior in the limit of very large Ly could be partly

addressed by a theoretical study of secondary instabilities
of growing TS modes and of decaying streamwise streaks.
Our present DNS approach alone cannot provide a satis-
factory answer. An experimental verification of the LSI

could be attempted with the low-melting eutectic alloy
In-Ga-Sn, where Re ¼ 8000 and Ha ¼ 80 would corre-
spond to U� 1 m=s and B� 0:3 T for a channel with
L ¼ 1 cm. However, the rigid lateral walls in a real chan-
nel flow present an important and yet undetermined factor.
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FIG. 4 (color online). Mean pressure gradient (normalized to
the basic flow) at Re ¼ 8000 for the intermittent state at Ha ¼
80, for purely 2D channel flow [14], and for fully developed
turbulence at Ha ¼ 40.
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