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We propose a new perspective on communication using chaos. A binary message is encoded into the

temporally causal relations on a coupled maps ring of N chaotic nodes. From the analysis of temporal

transfer entropy, the masked information can be recovered from transmitted signals at the receiver. The

communication scheme has been demonstrated to be robust against external noise and some traditional

attacks.
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The detection of causality, also known as the drive-
response relationship, between measured signals has at-
tracted much attention in recent years [1–3]. The causality
assessment is to evaluate the variance of predictability of
one series by incorporating information of the other. If the
predictability is consequently enhanced, then the latter is
identified as a driver which has a causal influence on the
former. Several methods have been proposed and success-
fully applied to artificial models and recorded data with the
assumption of stationarity [1,2]. Applications of them arise
in many different fields, such as physics, physiology, neu-
rophysiology, economy, and climatology [3].

In this Letter, we apply the concept of causality and its
measurement to a different field: the chaotic communica-
tion. The basic idea for chaotic communication is to make
use of the chaotic nature of the carrier to encrypt a se-
quence of messages. Two typical techniques include the
chaotic masking approach and the chaotic modulation
method [4]. Several variants and refinements of the two
methods had been proposed, for instant the use of different
levels of synchronization, different portraits of chaotic
carriers, different techniques of chaos control, and different
expressions of communication schemes [5]. The common
point of these methods is the reliance on synchronization
[6,7]. Here we develop a counterintuitive scheme which
hides binary messages in causal relationships on a couple-
map ring (CMR) consisting of chaotic elements. That is,
the clockwise or counterclockwise coupling on the ring
indicates the bipolar data �k ¼ 1 or �k ¼ 0. The time
series of two adjacent maps are used as transmitting sig-
nals through public channels. At the receiver, encrypted
messages are recovered by a proposed measure, the
temporal transfer entropy (TTE), based on information
theory. It has been demonstrated that the scheme is robust
against external noise and some traditional attacks. The
technique also provides us a new perspective toward cha-
otic communication.

Communication scheme.—The core idea of this Letter is
to utilize the temporal causality of coupled chaotic systems

for messages encryption and transmission. We have chosen
an one-dimensional unidirectionally CMR of N nodes as
the chaotic generator to encrypt transmitted messages, as
showed in Fig. 1(a). The dynamics of the subsystem Sn at
the nth node of the CMR is given by

xnðtþ 1Þ ¼ fðð1� "ÞxnðtÞ þ "XnðtÞÞ; (1)

where n ¼ 1; 2; . . . ; N, t is the time index, XnðtÞ is the
driving force from the nearest systems Sn�1, and coupling
strength " ¼ 0:5 is chosen throughout the Letter. We
choose the Ulam map fðxÞ ¼ 2� x2 as the local chaotic
dynamics. One can also choose other chaotic maps.
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FIG. 1. (a) Communication scheme based on temporal cau-
sality of the coupled maps ring. (b) Encoding process of the
binary information.
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To encode a series of K binary information �k (k ¼
1; . . . ; K) into the instantaneous causal relations of the
CMR, we choose the following driving term:

XnðtÞ ¼
�
xn�1ðtÞ if �k ¼ 1;
xnþ1ðtÞ if �k ¼ 0;

(2)

as drawn in Fig. 1(b). The reason why we use the CMR is to
keep the phase portraits of subsystems invariant under
every reversion of the coupling direction. The invariability
then prohibits intruders from mining the message by the
technique of return maps [8].

The outputs of the CMR containing message informa-
tion are communicated to the receiver over public chan-
nels. Here we select the iterations of x1ðtÞ and x2ðtÞ as the
carriers. For security, x1ðtÞ and x2ðtÞ are further modulated
by specific functions h1ðx1ðtÞ; k1Þ and h2ðx2ðtÞ; k2Þ; here
k1;2 are security keys, which are preknown by the receiver.

Modified signals y1ðtÞ and y2ðtÞ are then transmitted to
the receiver and demodulated by inverse functions H1;2 ¼
h�1
1;2 . Finally, the cipher messages can be retrieved by

monitoring the temporal causality between the series
x1ðtÞ and x2ðtÞ.

Temporal transfer entropy.—Among present methods of
assessing causality, transfer entropy (TE) [1] is the most
reliable one because of its solid mathematical founda-
tion of information theory. We start with the method and
further generalize it in this Letter to detect the temporal
variation of coupling directions. Here we briefly review
the basics of information theory and the concept of TE.
For a physical process I with probabilities fpðiÞg visiting
the states fig, Shannon entropy can be defined by HðIÞ ¼
�P

ipðiÞlog2pðiÞ. Such a measur provides a convenient
way to calculate the average minimum number of bits
needed to encode the physical process. The base num-
ber 2 only defines the unit as bit and will be neglected
hereafter.

If we introduce another process J with probability dis-
tribution fpðjÞg and joint probability fpði; jÞg, the average
information gained about I by the knowledge of J is given
by

MIJ ¼
X
i;j

pði; jÞ log pði; jÞ
pðiÞpðjÞ ; (3)

which is the well-known mutual information (MI). MI is
reliable to discover nonlinear dependencies (or couplings)
between systems of interest. Unfortunately, as a result of
the symmetric property, it does not contain any directional
information and becomes invalid in the causality analysis.
To overcome this fault, recently a modified measure was
proposed by incorporating the ideas of Markov property
and Kullback entropy. Denoting the state of the process I at
time � as i� and time �þ 1 as i�þ1, Schreiber [1] defined
the measure to detect asymmetry dependence of I on J by

TE J;I ¼
X

pði�þ1; i�; j�Þ logpði�þ1ji�; j�Þ
pði�þ1ji�Þ : (4)

For practical applications, the joint probability and condi-
tional probability distributions can be evaluated from time
series by simple box-counting algorithm or kernel estima-
tion. TE then provides us an excellent estimation to iden-
tify the causal relations of systems of interest.
In general cases, the causality does not keep invariant

with time passing. For instance, in the years 2001 and
2002 trading activities in the Dow Jones Industry Aver-
age (DJIA) influenced NASDAQ more than NASDAQ
influenced the DJIA, while the causal relation was reversed
in years 1998, 1999, and 2003 [9]. Similar examples appear
in neuroscience, climate, biological networks, etc. In our
communication scheme, the encrypted symbols defining
the coupling directions of CMR vary ceaselessly to encode
messages. The measure defined by Eq. (4) cannot detect
the nonstationary causal relations.
To take the nonstationary effect into consideration, we

modified the TE by adopting a different algorithm, the
skewed probability distribution, which has already been
introduced with the concept of causal entropy (CE) [10].
The probability distribution is updated once a new event is
generated. In other words, the distribution fp̂ðlÞgt evolves
with time. If the latest event visited the states le, the
appropriate probability is increased by a fixed value �p.
Otherwise, the others are fixed invariably. After every
update, the appropriate distribution is renormalized. Thus,

p̂ðlÞtþ1 ¼
8<
:

p̂ðlÞtþ�p
1þ�p if l ¼ le;
p̂ðlÞt
1þ�p otherwise:

(5)

The central core of such an algorithm is to enhance the
weight of probability of the latest event. Thus, the proba-
bility distribution is skewed toward the new events.
Applying it to calculate the time-dependent distribution
of joint and conditional probabilities, we can get

TE t
J;I ¼

X
p̂ði�þ1; i�; j�Þt logp̂ði�þ1ji�; j�Þt

p̂ði�þ1ji�Þt ; (6)

FIG. 2. Temporal transfer entropies TEt
S1 ;S2

and TEt
S1;S1

as
functions of time for a CMR of Ulam maps. At t ¼ 104, the
coupling direction is reversed. The two qualities of TTE clearly
reflect the variation of the causality.
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where the sum runs over all states. Equation (6) now allows
dynamically monitoring the change of causality between
coupled systems. We call the modified measure the tem-
poral transfer entropy (TTE).

The aforementioned CMR with the size N ¼ 100 is
taken as our test model to examine the reliability of the
measure. For the duration of long transients (�105) and
t < 104, the coupling direction is from the map Sn to the
map Snþ1, while the coupling is reversed after t > 104. By
discarding the transients, �p ¼ 10�3 is used to compute
the entropies TEt

S1;S2
and TEt

S2;S1
. The joint probability dis-

tributions of systems S1 and S2 are computed using simple
box counting with eight equidistant bins and the initial
distributions fp̂ðlÞgt¼0 of S1 and S2 are collected from the
transients. The numerical results are shown in Fig. 2. For
the duration of t < 104, we clearly notice the significant
predominance of TEt

S1;S2
over TEt

S2;S1
, which indicates the

coupling directing from S1 to S2. After t > 104, values of
TEt

S1;S2
and TEt

S2;S1
reflect the reversion of causality of two

systems; i.e., TEt
S2;S1

predominates over TEt
S1;S2

.

Note that after tuning the causality, it takes some tran-
sitions for both qualities to evolve from the presaturated
state to the postsaturated state. The time interval required
for the transition process is called the relaxation time
labeled as TR. Actually, the qualities of TR strongly depend
on the choice of �p. As illustrated in Fig. 3(a), the func-
tional relation of�p and TR obeys a specific power law. As
one can observe, the relaxation time of the transition from a
predominant state to an inferior state (circles) is shorter
than the one required for the reverse transition (triangles)
with respect to an identical �p, although both transitions
share an identical exponent �� 1:1 in the log-log plot.
Moreover, with the increase of �p the distinction between
the predominant state and the inferior state withers accord-
ingly. The dependence of TTE on the quantities of �p is
shown in Fig. 3(b), where the error bars embrace 2 standard
deviations of the distribution of TTE over long evolutions.

Since TTE is able to monitor the direction of causality,
the next step is the evaluation of the scheme to encrypt and

decrypt a message. We introduce a series of binary mes-
sages�k with the length of each information bit T�, shown

in Fig. 4(a). To enhance communication efficiency, we
choose T� ¼ 200. A specific sequence is taken for the

promoter which labels out the initiation of the meaningful
message (t ¼ 0 in the figure). As mentioned above, �k is
modulated into the causal relations in the CMR, and sig-
nals x1ðtÞ and x2ðtÞ are served as chaotic carriers. The
modulation function is chosen as hðxÞ ¼ x to simplify
the analysis. At the receiver, the encrypted data is decoded
by the analysis of TTE, and �p is chosen as 0.02 to
accelerate the relaxation process. We plot values of TTE
as a function of time in the directions of S1 ! S2 (blue
solid line) and S2 ! S1 (red dotted line) in Fig. 4(b). To
facilitate the decryption, a quality �k is defined to evaluate
the predominance of coupling directions,

�k ¼ Xðkþ1ÞT�

kT�þt0
ðTEt

S1;S2
� TEt

S2;S1
Þ; (7)

where t0 ¼ 50 is chosen to reduce the effect of relaxation.
The quality �k is positive if the information bit �k ¼ 1,
otherwise negative. The encrypted messages then can be
successfully recovered by the sign of �k, as presented in
Fig. 4(c).
Robustness.—We further consider the performance of

the method with respect to robustness and security. To
evaluate the robustness of the proposed scheme against
the influence of external noise, we calculate the probability
of recovering a bit incorrectly under various noise levels.
We added two independent sequences of Gaussian noise to
the carriers x1ðtÞ and x2ðtÞ, respectively, and compared the

FIG. 3. (a) Relaxation times TR as functions of �p. The slope
of the reference lines is �1:1. (b) The dependence of TTE on
�p. With the increase of �p, the distinction between the
predominant state (empty circles) and the inferior state (solid
circles) becomes smaller.

FIG. 4 (color). (a) A sequence of binary messages �k with the
length of each information bit T� ¼ 200. (b) The evolution of

TTE in the directions of S1 ! S2 (blue solid line) and S2 ! S1
(red dotted line). (c) The sequence of �k: �k > 0 indicates �k ¼
1, while �k < 0 indicates �k ¼ 0.
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decoded binary message to the original one. Figure 5
shows the error probability Pe as a function of the signal-
to-noise-ratio, SNR(dB) [11]. The result shows that the
scheme has a high noise tolerance capability and thus,
the system is feasible.

When crypt-analyzing a communication scheme, the
general assumption is that intruders know exactly the
decoding mechanism at the receiver. In other words, they
are familiar with the technique of TTE and have the
modulation functions h1ðx1; k1Þ and h2ðx2; k2Þ except the
security keys k1 and k2. Here we adopt an algorithm for
h1ðx1; k1Þ and h2ðx2; k2Þ to consider the security issue. In
real applications of detecting causality, it is important to
access the significance of the measured value of TE. To this
end, the original data are shuffled in time and consequently
all potential correlations between two processes I and J are
destroyed [3]. A significant threshold confirming the in-
formation direction is then determined by calculating TE
with the shuffled data. Based on the concept of the surro-
gate data, a candidate for the modulation function is the
Knuth shuffle algorithm [12] which shuffles xðtÞ through a
random number generator using a specific seed. The seed
therefore is used as the security key k to recover the
modulated signal through a reverse function, xðtÞ ¼
HðyðtÞ; kÞ. Owing to the high obscurity of causality assess-
ment, it is hard for attackers to reduce the key space even
though they can get some original messages and their
corresponding cipher messages. Other modulation func-
tions which eliminate the causal relations between chaotic
carriers are available.

By incorporating the concept of synchronization, the
communication scheme can be refined further. For ex-
ample, suppose SAn and SBn are the n-th nodes on two
CMRs which share identical formulae but evolve from
different initial conditions. The couplings are directed
from SAn or SBn to a single node S0 if the symbols 1 or 0

are encoded. The iterations of S0 are transmitted to the
receiver over a public channel. At the receiver, one replica
of CMRs is presynchronized with one of the originals and
TTE is applied to detect the causality between S0 and the
replica of SAn (or SBn ). In this scheme, the parameter sets of
CMRs are served as the security keys.
In brief, we have demonstrated that the processes of

encoding and decoding temporal causality can be used in
chaotic communications. The availability of TTE in
continuous-time and multidimensional problems has also
been confirmed [13]. The proposed scheme is promising
for the encryption of messages and deserved further inves-
tigations in various directions, such as the enhancement of
efficiency, realization by means of electronic circuit or
multimode solid-state laser [3], etc. The proposed non-
linear measurement, TTE, can be further applied to moni-
tor causal relationships between dynamical systems.
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