
Analytical Approach to Initiation of Propagating Fronts

I. Idris and V.N. Biktashev

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
(Received 1 September 2008; published 10 December 2008)

We consider the problem of initiation of a propagating wave in a one-dimensional bistable or excitable

fiber. In the Zeldovich-Frank-Kamenetskii equation, also known as the Nagumo equation and Schlögl

model, the key role is played by the ‘‘critical nucleus’’ solution whose stable manifold is the threshold

surface separating initial conditions leading to the initiation of propagation and decay. An approximation

of this manifold by its tangent linear space yields an analytical criterion of initiation which is in good

agreement with direct numerical simulations.
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Threshold phenomena are widespread in bistable dissi-
pative systems. If such a system is spatially extended, then
fronts switching from one local state to the other can
propagate. Propagating fronts, or trigger waves, play im-
portant roles in such diverse physical situations as self-
heating in metals and superconductors, phase transitions,
combustion and other chemical reaction waves, and bio-
logical signaling systems [1–6] to name a few.

Bistable systems are related to excitable media. An
excitable medium has a ‘‘resting’’ state which is stable
against small perturbations, but an above-threshold pertur-
bation can create a propagating pulse wave of finite length
and duration, in the wake of which the system returns to the
resting state. The front of an excitable pulse is often
essentially a trigger wave in a suitably defined ‘‘fast sub-
system’’ of the excitable system [3,6–8].

The existence of trigger fronts and excitation pulses
solutions, in particular, mathematical models, is well
studied. However, whether a propagating wave will ac-
tually be observed depends on initial conditions. Under-
standing the conditions of initiation of propagating fronts
or pulses is very important in applications. In animal
hearts, such waves trigger the coordinated contraction of
the muscle, and failure of initiation can cause or contribute
to serious or fatal medical conditions or render ineffi-
cient the work of pacemakers or defibrillators [9]. In com-
bustion, understanding of initiation is of critical impor-
tance for safety in storage and transport of combustible
materials [10].

Mathematically, after the external initiating stimulus has
finished, the problem is reduced to classification of initial
conditions that will or will not lead to a propagating wave
solution. This problem is difficult as it is essentially non-
stationary, spatially extended, and nonlinear and does not
have any helpful symmetries. Yet the problem is so im-
portant that analytical answers are highly desirable even if
not very accurate.

Early attempts of analytical treatment of the initiation
problems, including the spatially extended ones, used a

linear description supplemented with heuristic conditions
to represent the threshold [11–15]. More recently, low-
dimensional Galerkin-style approximations of the partial
differential equations have been tried [16–18].
In the past two decades, this problem has been analyzed

from the dynamical systems theory viewpoint [16–23].
These studies identified the importance of certain ‘‘critical
solutions,’’ whose codimension-1 (center-)stable manifold
acts as the critical surface separating the basins of attrac-
tion of initiation and decay.
This understanding has so far remained largely formal.

Although it was used in sophisticated numerical methods
of calculating initiation thresholds, e.g., [22], it did not
produce any analytical results. Here we propose a practical
method of defining the initiation criteria analytically. The
idea is based on the linearization of the (center-)stable
manifold of the critical solution by its linear tangent, the
(center-)stable space. One would expect that this should
work well for initial conditions sufficiently close to the
critical nucleus. However, how close it should be to give a
reasonable approximation is not clear a priori. We consi-
der a test case with very crude initial conditions, in the
form of rectangular pulses, and the analytical criterion
gives surprisingly good agreement with direct numerical
simulations.
We consider a one-component reaction-diffusion equa-

tion

ut ¼ uxx þ fðuÞ; (1)

with bistable kinetics fðuÞ. As an archetypical example, we
consider a Zeldovich-Frank-Kamenetskii (ZFK) equation
suggested to describe flame propagation [24], which is also
known as the Schlögl model in chemical kinetics [25] and
as the Nagumo equation in its capacity as the fast equation
in the FitzHugh-Nagumo system, suggested as a simplified
model of nerve conduction [26,27]. This equation has the
kinetics in the form

fðuÞ ¼ uðu� �Þð1� uÞ; � ¼ const< 1=2: (2)
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Equations (1) have propagating front solutions

u ¼ Uðx� ct� �Þ; � ¼ const;

e.g., for (2),

Uð�Þ ¼ 1

1þ e�=
ffiffi
2

p ; c ¼ 1� 2�ffiffiffi
2

p :

We consider a half-infinite cable which is driven away at
t ¼ 0 from the resting state u ¼ 0 by an instantaneous
stimulus of amplitude us and spatial extent xs at t ¼ 0
and/or by a current injection at x ¼ 0 of amplitude Is
lasting for time ts:

ut ¼ uxx þ fðuÞ; ðx; tÞ 2 Rþ � Rþ; (3)

uxð0; tÞ ¼ Isgðt; tsÞ; gðþ1; tsÞ ¼ 0; (4)

uðx; 0Þ ¼ ushðx; xsÞ; hðþ1; xsÞ ¼ 0; (5)

or, equivalently,

ut ¼ uxx þ fðuÞ þ 2Isgðt; tsÞ�ðxÞ; ðx; tÞ 2 R� Rþ;
(6)

uðx; 0Þ ¼
�
ushðx; xsÞ; x � 0;
ushð�x; xsÞ; x < 0;

(7)

where �ð Þ is the Dirac delta function [generalization for a
generic stimulus Isgðx; tÞ is straightforward]. Specifically,
we consider stimuli of rectangular profiles

gðt; tsÞ ¼ �ðts � tÞ; hðx; xsÞ ¼ �ðxs � xÞ; (8)

where �ðÞ is the Heaviside step function.
Depending on parameters us, xs, Is, and ts, problem (3)–

(5) can typically produce either a ‘‘decay’’ solution such
that maxxuðx; tÞ ! 0, t ! 1 [see Fig. 1(a)], or an ‘‘initia-

tion’’ solution such that maxxjuðx; tÞ �Uðx� ct� �Þj !
0, t ! 1, for some� 2 R [see Fig. 1(b)]. Naturally, in the
even extension (6) and (7), the initiation solution produces
two fronts propagating both ways. Our goal is a condition
that would predict which of the two outcomes will take
place for given us, xs, Is, and ts. The curve in the ðts; IsÞ
plane, at us ¼ 0, separating the two outcomes, is widely
known as the strength-duration curve. We will also con-
sider a similar critical curve in the ðxs; usÞ plane at Is ¼ 0
[see Fig. 1(c)], which we will call the strength-extent
curve.
We consider first the case Is ¼ 0 and, following [20],

review the fundamental role of the critical nucleus solution
u�ðxÞ, which is defined as a nontrivial stationary solution of
(1), i.e.,

u00� þ fðu�Þ ¼ 0; u�ðxÞ � const;

e.g., for (2),

u�ðxÞ ¼ 3�
ffiffiffi
2

p

ð1þ �Þ ffiffiffi
2

p þ coshðx ffiffiffi
2

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5�þ �2

p :

It is then demonstrated that such a solution is unstable.
Consider linearization of (1) near it, uðx; tÞ ¼ u�ðxÞ þ
vðx; tÞ, vðx; tÞ � 1, and then vt ¼ Lv, where L ¼ @2x þ
fuðu�ðxÞÞ. Stability of u� is determined by the spectrum
of L:

L�j ¼ �j�j: (9)

SinceL is a Sturm-Liouville operator, all of its eigenvalues
�j are real.

Notice that L@xu� ¼ 0 so u0�ðxÞ is an eigenfunction
corresponding to eigenvalue 0. By Sturm’s oscillation
theorem, if eigenvalues of the discrete spectrum are or-
dered so that �1 > �2 > �3 > � � � , then eigenfunction �j

FIG. 1 (color online). (a),(b) Response to a below- and above-threshold initial perturbation in ZFK equations (1), (2), and (8).
Parameter values: � ¼ 0:13, Is ¼ 0, and xs ¼ 2:10 for both (a) subthreshold us ¼ 0:330 483 1 and (b) superthreshold us ¼ 0:330 483 3
cases, numerics using central difference centered in space with step hx ¼ 0:15 and forward Euler in time with step ht ¼ 0:01. Dashed-
dotted black lines: initial conditions; bold solid black lines: the critical nuclei. (c) The corresponding critical strength-extent curve,
separating initiation initial conditions from decay initial conditions. (d) The sketch of a stable manifold of the critical solution for the
ZFK equation. The critical nucleus is represented by the black dot; the critical trajectories, constituting the stable manifold, are shown
in black. The family of initial conditions is represented by the dashed-dotted line. The bold black line is the critical trajectory with
initial condition in that family. The subthreshold trajectories are represented by the blue line, while the red lines represent
superthreshold trajectories. Note that the point where the initial condition intersects the stable manifold is shown as the empty circle.
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shall have precisely j� 1 zeros. The critical nucleus u�ðxÞ
is an even function and has a single maximum at x ¼ 0, so
u0�ðxÞ has exactly one zero, and therefore we have

C2u
0�ðxÞ ¼ �2; �2 ¼ 0;

for someC2 � 0. This implies that u� is unstable, and there
is exactly one positive eigenvalue �1 > 0, with a corre-
sponding �1ðxÞ> 0. The continuous spectrum of L is
f�g ¼ ð�1; �c�, where �c ¼ limx!�1½@ufðuÞ�u¼u�ðxÞ ¼
f0ð0Þ< 0. Hence in the phase space of (6), equilibrium
u� is a saddle point, with only one unstable direction. Its
stable manifold [28] has therefore codimension one and, as
such, partitions the phase space. One part of the phase
space corresponds to the decay solutions and the other to
the initiation solutions [Fig. 1(d)]. A one-parametric family
of initial conditions (5), say, with a fixed xs > 0 and the
parameter us, will cross the stable manifold once, say, at
us ¼ u�sðxsÞ. For us < u�sðxsÞ we have decay, and for us >
u�sðxsÞ initiation. This defines the strength-extent curve
us ¼ u�sðxsÞ. The role of the stable manifold of the critical
nucleus u� as the threshold surface in the phase space is an
empirically verifiable fact: it means that the critical nucleus
will be observed as a transient for any initial conditions
sufficiently close to the threshold [see Figs. 1(a) and 1(b)
for t & 100].

Now we shall use this understanding to construct an
analytical criterion of initiation. Our idea is to replace
the stable manifold of u� by its tangent, i.e., the stable
space. This implies considering the initiation problem in
the linear approximation around u�ðxÞ. Continuing with the
case Is ¼ 0, we get

uðx; tÞ ¼ u�ðxÞ þ
X1
j¼1

aje
�jt�jðxÞ;

where for brevity the summation is assumed over both the
discrete and the continuous spectrum. If we choose the
eigenfunctions �jðxÞ normalized, then aj ¼

R1
�1 �jðxÞ�

½uðx; 0Þ � u�ðxÞ�dx. Eigenfunction �2ðxÞ ¼ u0�ðxÞ is odd,
u�ðxÞ and uðx; 0Þ are even, hence a2 ¼ 0, andP1

j¼3 aje
�jt�jðxÞ ! 0 as t ! 1 since �j 	 �3 < 0 for j �

3. Hence in this approximation uðx; tÞ ! u�ðxÞ if and only
if a1 ¼ 0. So the equation of the stable space, which is an
approximation of the critical manifold, is a1 ¼ 0 or

Z 1

0
�1ðxÞ½ushðx; xsÞ � u�ðxÞ�dx ¼ 0: (10)

This is a finite equation for xs and us, which provides the
desired analytical definition of the strength-extent curve.

For Is � 0, we have

uðx; tÞ ¼ u�ðxÞ þ
X1
j¼1

AjðtÞ�jðxÞ;

where Ajð0Þ ¼
R1
�1 �jðxÞ½uðx; 0Þ � u�ðxÞ�dx and

dAj=dt ¼ �jAj þ 2IsgðtÞ�jð0Þ, which can be solved in

quadratures for a given gðtÞ, and then the critical condition
is A1ðþ1Þ ¼ 0, or

A1ð0Þ þ 2Is�1ð0Þ
Z 1

0
e��1tgðtÞdt ¼ 0: (11)

Now we consider an example with explicit answers. For
(2), if � � 1, then u� ¼ Oð�Þ, and as in [17], for u & � we
can approximate

fðuÞ 
 uðu� �Þ (12)

and then u� 
 3
2 �sech

2ðx ffiffiffi
�

p
=2Þ. In this approximation, to

solve the eigenvalue problem (9), it is convenient to change

variables �ðxÞ ¼ c ðzÞ, z ¼ tanhðx ffiffiffi
�

p
=2Þ, and then

½ð1� z2Þc 0�0 þ
�
12� 4ð1þ�=�Þ

1� z2

�
c ¼ 0; c ð�1Þ ¼ 0;

solutions of which are associated Legendre functions [29].
In particular, we find that

�1 ¼ 5�=4; �1ðxÞ ¼ C1sech
3ðx ffiffiffi

�
p

=2Þ
for some C1 � 0.
For Is ¼ 0 and hðx; xsÞ ¼ �ðxs � xÞ, Eq. (10) then gives

an explicit equation for the strength-extent curve

us ¼ 9�

8

�
2

�
tanh

�
xs

ffiffiffi
�

p
2

�
sech

�
xs

ffiffiffi
�

p
2

�

þ 4

�
arctanðexs

ffiffi
�

p
=2Þ � 1

��1
: (13)

For us ¼ 0 and gðt; tsÞ ¼ �ðts � tÞ, we have A1ð0Þ ¼
9
8�

ffiffiffi
�

p
C1 and Eq. (11) gives the classical Lapicque-Blair-

Hill [11–13] equation for the strength-duration curve

Is ¼ Irh

1� e�ts=�
; (14)

with rheobase

FIG. 2 (color online). Comparison of analytical predictions
with numerical simulations. (a) Strength-extent curves for rect-
angular initial conditions. (b) Strength-duration curves for point
stimulation. Red solid lines: Analytical approximations, (13) for
(a) and (14)–(16) for (b). Blue stars (‘‘cub’’): Numerical results
for cubic kinetics (2). Magenta diamonds (‘‘quad’’): Numerical
results for quadratic kinetics (12).
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Irh ¼ �1ð0Þ
�1

R1
0 �1ðxÞu�ðxÞdx ¼ 45

64
��3=2 (15)

and chronaxie

� ¼ ð�1Þ�1 ¼ 4

5�
: (16)

Figure 2 illustrates the quality of the analytical critical
curves (13)–(16), compared to both the curves obtained by
direct numerical simulations for the quadratic nonlinearity
(12) valid for small � and the original cubic nonlinearity
(2). For the chosen parameter values, the error introduced
by linear approximation of the stable manifold of the
critical nucleus is of the same order of magnitude as the
error introduced by the quadratic approximation of the
nonlinearity.

In conclusion, we have obtained analytical expressions
for initiation criteria for a concrete simple example. Such
criteria were obtained experimentally and numerically, and
any analytical expression was through fitting; we have
deduced it mathematically ab initio, via a clearly defined
procedure. The expressions are simple enough to be useful
in practice, but the procedure of obtaining them is probably
more important as it can be extended to other models. The
expression for the strength-extent curve is specific for the
ZFK equation and will have a different form for a different
model. However, the temporal strength-duration curve is
universal, up to the values of two constants, and it coin-
cides precisely with a classical form used for over 100 years
for analytical fitting of empirical data.

A linear approximation of the separatrix can be used
after Galerkin-style projection to a low-dimensional mani-
fold [18]; however, the accuracy of the resulting criterion is
severely affected by the Galerkin projection and for initial
conditions like (8) is poor. We have shown that the linear
approximation can actually be done right in the functional
space without Galerkin projection.

The general principle, linear approximation of the
(center-)stable manifold of the critical solution, easily
admits extensions, e.g., for different temporal and spatial
profiles of the initiation stimuli, different initiation proto-
cols, possibility of optimization, say, with respect to the
total energy required to initiate a wave, etc.

It also can be extended to other threshold systems,
whenever the critical solution can be identified, including
those having critical solutions which are not critical nuclei
[23]. In such systems, an additional problem is anticipated,
as one cannot use the even ðx ! �xÞ embedding and have
to take into account the translational symmetry of the
problem posed on the whole real axis.
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