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We consider a scheme of quantum teleportation where a receiver has multiple (N) output ports and

obtains the teleported state by merely selecting one of the N ports according to the outcome of the sender’s

measurement. We demonstrate that such teleportation is possible by showing an explicit protocol where N

pairs of maximally entangled qubits are employed. The optimal measurement performed by a sender is the

square-root measurement, and a perfect teleportation fidelity is asymptotically achieved for a large N

limit. Such asymptotic teleportation can be utilized as a universal programmable processor.
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Quantum teleportation [1] is a technique to transfer an
unknown quantum state from a sender (Alice) to a receiver
(Bob) exploiting their prior shared entangled state. In the
standard teleportation scheme, Alice first performs a joint
measurement on the state to be teleported and half of their
entangled state. She then tells the outcome to Bob via a
classical communication channel. To complete the tele-
portation, Bob applies a unitary transformation, which
depends on the outcome of the Alice’s measurement, to
the remaining half of their entangled state.

On the other hand, programmable processors (in short,
processors) [2,3] are devices to manipulate a state via
program states. Suppose that we wish to apply operation
" to an input state j�ini such that j�ini ! "ðj�iniÞ. To do
this by using a processor, we first generate the program
state j"i, in which " is stored. A processor then performs a
fixed operation G and accomplishes the desired task such
that Gðj�ini � j"iÞ ¼ "ðj�iniÞ � j"0i, just like a general-
purpose computer executes a program stored in memory.
In this way, a programmable processor provides the
scheme of storing and retrieving operations. If a processor
can deal with arbitrary ", it is called a universal (program-
mable) processor. It was shown that a faithful [the output
state is exactly "ðj�iniÞ] and deterministic (with a unit
success probability) universal processor cannot be realized
by a finite dimensional system [2]. The standard teleporta-
tion scheme provides a probabilistic universal processor
[2], but the success probability becomes extremely small if
the dimension of an input state is large; the obstacle is that
Bob’s unitary transformation in the teleportation scheme
generally does not commute with " [2,4].

Let us then consider the teleportation scheme proposed
by Knill, Laflamme, and Milburn (KLM) [5] (and its
deterministic version [6]), which is a technique to enable
linear-optics quantum computation. In the KLM scheme,
Bob has multiple (N) output ports and obtains the tele-
ported state by selecting one of theN ports according to the
outcome of Alice’s measurement (see Fig. 1). To complete

the teleportation, however, Bob further needs to apply a
unitary transformation (phase shift) to the state of the
selected port, as well as the standard teleportation scheme.
If the KLM scheme is successfully modified such that the
unitary transformation is unnecessary (i.e., the state of one
of the N ports becomes the teleported state as it is), the
teleportation scheme can provide a universal processor.
Suppose that Bob applies " to every port (denoted by
"�N; see Fig. 1) in advance of the teleportation (this
corresponds to the operation for storing "). The teleporta-
tion procedure then results in the state processed by ",
regardless of which port is selected. This is because the
operation of selecting a port (without any additional uni-
tary transformation) always commutes with "�N; i.e., se-
lecting a port after applying "�N causes the same result as
applying "�N after selecting a port. This implies that the
fixed operation of the teleportation (Alice’s measurement
and Bob’s selection) can execute arbitrary " (including
measurements and even trace-nonpreserving operations),
if the state jc i employed for the teleportation is changed
into j"i ¼ ð1 � "�NÞjc i. Note that, since the form of the
program state j"i is known for given ", we can also gen-
erate it by various methods other than applying "�N . This
teleportation scheme does not contradict the law of physics
that prohibits superluminal (faster than light) communica-
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FIG. 1 (color online). Setting of asymptotic teleportation.
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tion because, without knowing the outcome of Alice’s
measurement, Bob cannot know which port contains the
teleported state and, hence, cannot obtain any information
about the teleported state. However, such a scheme must be
an approximate one if N is finite; otherwise, a faithful and
deterministic universal processor would be realized by a
finite dimensional system, which contradicts the no-go
theorem in [2]. Therefore, it is quite desirable to achieve
faithful teleportation in the asymptotic limit of N ! 1.

In this Letter, we demonstrate that such asymptotic tele-
portation is possible by showing an explicit protocol where
N pairs of maximally entangled qubits (quantum bits) are
employed. A perfect teleportation fidelity is achieved in the
asymptotic limit. Moreover, we determine the optimal
measurement performed by Alice.

Now let us formulate asymptotic teleportation that aims
to teleport an unknown state on a qudit (d-dimensional
system). To begin with, Alice and Bob share a pure en-
tangled state jc i on 2N qudits (Fig. 1). Bob has half of the
2N qudits: B1; B2; . . . ; BN , where each corresponds to the
output port; i.e., the unknown state of Alice’s C qudit is
finally teleported to one of the N qudits. Alice has the
remaining half of the 2N qudits: A1; A2; . . . ; AN . These N
qudits are denoted by A as a whole. Without loss of gen-
erality, jc i can be written as

jc i ¼ ðOA � 1B1...BN
Þj�þiA1B1

j�þiA2B2
. . . j�þiANBN

;

where j�þi ¼ ð1= ffiffiffi
d

p ÞPd�1
k¼0 jkki and O is an arbitrary

operator that satisfies trOOy ¼ dN so that jc i is normal-
ized. Alice then performs a joint measurement with N
possible outcomes (1; 2; . . . ; N) on the A and C qudits.
The measurement is described by a positive operator val-
ued measure (POVM) whose elements are f�ig such thatP

N
i¼1 �i ¼ 1AC. Suppose that she obtains the outcome i.

She then tells the outcome to Bob via a classical chan-
nel. Finally, Bob discards the (N � 1) qudits of
B1B2 . . .Bi�1Biþ1 . . .BN (i.e., all of his qudits except for
Bi), which are briefly denoted by �Bi. The state of the
remaining Bi qudit (regarded as B) is the teleported state.

The channel of the above asymptotic teleportation,
which maps the density matrices acting on the Hilbert
space H C to those on H B, is thus

�ð�inÞ ¼ XN
i¼1

½trA �BiC

ffiffiffiffiffiffi
�i

p ðjc ihc j � �in
C Þ

ffiffiffiffiffiffi
�i

p y�Bi!B

¼ XN
i¼1

trAC�if½ðO � 1Þ�ðiÞ
ABðOy � 1Þ� � �in

C g;

with

�ðiÞ
AB ¼ ½tr �Bi

ðPþ
A1B1

� Pþ
A2B2

� � � � � Pþ
ANBN

Þ�Bi!B

¼ 1

dN�1
Pþ
AiB

� 1 �Ai
; (1)

where Pþ ¼ j�þih�þj and �Ai is a shorthand notation for
A1A2 . . .Ai�1Aiþ1 . . .AN . The channel is characterized by

the fidelity f averaged over all uniformly distributed input
pure states, which is given by f ¼ ðFdþ 1Þ=ðdþ 1Þ, with
F being the entanglement fidelity of the channel [7]. For
the channel �, we have

F ¼ trPþ
BD½ð� � 1ÞPþ

CD�

¼ 1

d2
XN
i¼1

tr�iAB½ðO � 1Þ�ðiÞ
ABðOy � 1Þ�: (2)

Note that �i is changed into an operator acting on H A �
H B in the last equality of Eq. (2) because we used the
relationship that ðV � 1ÞPþ ¼ ð1 � VTÞPþ for any opera-

tor V. Hereafter, the subscript of AB in both �i and �ðiÞ is
omitted for simplicity, unless it is confusing.
Let us first consider the important case whereO ¼ 1 and

d ¼ 2; i.e., N pairs of maximally entangled qubits are
employed for asymptotic teleportation. The entanglement

fidelity F in this case is F ¼ ð1=4ÞPN
i¼1 tr�i�

ðiÞ.
Therefore, the problem of maximizing F with respect to
f�ig is equivalent to the quantum detection problem of
minimizing the error probability (pe ¼ 1� 4F=N) of the

quantum signals f�ð1Þ; �ð2Þ; . . . ; �ðNÞg with equal prior

probability 1=N. The signal states �ðiÞ’s given by Eq. (1)
are mutually noncommutable mixed states, and therefore
determining the optimal detection measurement in an ana-
lytical way is not easy. Fortunately, however, it can be
shown that the square-root measurement (SRM) (also
known as a pretty good measurement or least-squares

measurement) [8,9] is indeed optimal for f�ðiÞg.
The POVM elements of SRM are given by

�SQ
i ¼ ��ð1=2Þ�ðiÞ��ð1=2Þ; with � ¼ XN

i¼1

�ðiÞ:

Since � is not full rank, ��1 is defined on the support of �.

Moreover, we implicitly assume that � ¼ ð1�PN
i¼1 �

SQ
i Þ=N is added to every �SQ

i so that the POVM

elements sum to identity. Note that the excess term � does

not affect the entanglement fidelity because tr�ðiÞ� ¼ 0.
Based on the obvious correspondence between qubits

and 1=2 spins j0ð1Þi $ j 12 ;� 1
2 ð12Þi, we regard each qubit as

a 1=2 spin, i.e., SUð2Þ basis. It is then convenient to
consider jc i of N pairs of spin singlets, i.e., jc i ¼
jc�i�N (instead of jc i ¼ j�þi�N), and as a result Pþ in

�ðiÞ is replaced by P� ¼ jc�ihc�j, where jc�i ¼
ðj01i � j10iÞ= ffiffiffi

2
p

. The POVM elements for the two cases
are easily interconverted by applying the unitary trans-
formation (1A � �yB). In the language of SUð2Þ represen-
tation, eigenvectors with eigenvalues ��

j ¼ ðN=2� jÞ=2N
and �þ

j ¼ ðN=2þ jþ 1Þ=2N of � are given by

j�½N�
� ð��

j ;m;�Þi ¼ �j0iBj�½N�ðj;mþ; �Þihj;mþ; j�i�
� j1iBj�½N�ðj;m�; �Þihj;m�; j�iþ;

where j�½N�ðj; m; �Þi ¼ jj; m; �i denotes the orthogonal
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basis of N-spin systems, i.e., the basis of irreducible rep-
resentation of SUð2Þ�N . The spin angular momentum j
runs from jmin to N=2 (m ¼ �j; . . . ; j), where jmin ¼ 0
(1=2) when N is even (odd) and � specifies the additional
degree of freedom. Here we introduced a shorthand nota-
tion for (nonvanishing) Clebsch-Gordan coefficients

hj1; m1; ji� ¼ hj1; m1;
1
2;�1

2jj; m1 � 1
2i

¼ ð�1Þj1þð1=2Þ�jh12;�1
2; j1; m1jj;m1 � 1

2i
and write j� ¼ j� 1

2 and m� ¼ m� 1
2 . The proof of the

eigenvalue equation

�j�½N�
� ð��

j ;mÞi ¼ ��
j j�½N�

� ð��
j ;mÞi (3)

is carried out by induction and by noting that � ¼ �½N� is
constructed recursively:

�½N� ¼ �½N�1� � 1AN

2
þ 1A1

2
� � � � � 1AN�1

2
� P�

BAN
:

Details are presented in the appendix of the preprint ver-
sion of this Letter [10].

The N-spin eigenfunctions j�½N�i are computed re-

cursively: j�½N�1�ij�½1�i ! j�½N�i, where j�½N�1�i are
(N � 1)-spin eigenfunctions of the first (N � 1) spins

(A1; . . . ; AN�1) and j�½1�i are the 1=2 spin functions of

the AN qubit. The other choice of construction of j�½N�i
results in a different set of functions j�½N�0ðj;m; �0Þi,
which are unitarily equivalent to j�½N�ðj; m; �Þi, and the
unitary transformation depends only on � and �0 for each
j. This fact enables us to calculate explicitly the matrix
elements involved in the calculation of the entanglement
fidelity F as follows:

h�ðiÞðs; sz; �Þj��ð1=2Þj�ðiÞðs0; s0z; �0Þi ¼ �s;s0�sz;s
0
z
��;�0cðsÞ;

(4)

with

cðsÞ ¼ ð��
s�1=2Þ�1=2 s

2sþ 1
þ ð�þ

sþ1=2Þ�1=2 sþ 1

2sþ 1
: (5)

Here the states of

j�ðiÞðs; sz; �Þi ¼ jc�iBAi
j�½N�1�0 ðs; sz; �Þi;

with j�½N�1�0 i being the (N � 1)-spin eigenfunction for the
�Ai qubits, are the eigenfunctions of �

ðiÞ, and thus

�ðiÞ ¼ 1

2N�1

XðN�1Þ=2

s¼smin

X
sz;�

j�ðiÞðs; sz; �Þih�ðiÞðs; sz; �Þj;

where smin ¼ 0 (1=2) when N � 1 is even (odd). Note that
matrix elements of Eq. (4) depend only on s. See the
appendix of the preprint version of this Letter [10] for
the detailed derivations of Eqs. (4) and (5). Note further

that, in terms of j�ðiÞðs; sz; �Þi, both � and �ðiÞ are found to
be block-diagonal with respect to s. The block matrices are

denoted by �ðsÞ and �ðiÞðsÞ, respectively.

Now, from Eqs. (4) and (5), we have

F ¼ 1

22
XðN�1Þ=2

s¼smin

XN
i¼1

tr�ðsÞ�ð1=2Þ�ðiÞðsÞ�ðsÞ�ð1=2Þ�ðiÞðsÞ

¼ N

22N
XðN�1Þ=2

s¼smin

X
sz;�

cðsÞ2

¼ N

22N
XðN�1Þ=2

s¼smin

ð2sþ 1Þ2ðN � 1Þ!
ðN�1

2 � sÞ!ðNþ1
2 þ sÞ! cðsÞ

2

¼ 1

2Nþ3

XN
k¼0

�
N � 2k� 1ffiffiffiffiffiffiffiffiffiffiffiffi

kþ 1
p þ N � 2kþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � kþ 1
p

�
2 N

k

� �
:

Here we introduced k ¼ ðN � 1Þ=2� s in the last equality.
The corresponding average fidelity f as a function of N is
plotted by solid circles in Fig. 2. For N � 3, the fidelity
exceeds the classical limit fcl ¼ 2=ðdþ 1Þ (fcl ¼ 2=3 for
d ¼ 2), which is the best fidelity via a classical channel
only [7]. Therefore, this protocol works as quantum tele-
portation for N � 3. Moreover, the fidelity approaches to

f ¼ 1 for increasing N. In fact, by expanding ð1� xÞ�1=2

in F into the Taylor series of ðN�2kÞ2
ðNþ2Þ2 and noting

P
N
k¼0ðN �

2kÞ2mðNkÞ ¼ OðNmÞ2N, we find that f ! 1� 1=ð2NÞ for

N ! 1. Therefore, the protocol of employing N spin
singlets and SRM certainly achieves perfect fidelity in
the asymptotic limit.
Let us then prove that SRM is an optimal measurement

for jc i of N spin singlets. The problem of maximizing

F ¼ ð1=4ÞPN
i¼1 tr�i�

ðiÞ is a semidefinite program [11]

and thus has the dual problem of minimizing ð1=4ÞtrY
subject to Y � �ðiÞ � 0 for all i [9,12]. Any feasible solu-
tion of the dual problem gives an upper bound of the
original problem. Therefore, it is enough to show that

YSQ ¼ PN
i¼1 �

SQ
i �ðiÞ is a feasible solution (i.e., YSQ �

�ðiÞ � 0) because ð1=4ÞtrYSQ agrees with F obtained by

SRM. Using Eq. (6), we find that YSQ ¼ PðN�1Þ=2
s¼smin

YSQðsÞ,
with YSQðsÞ ¼ cðsÞ

2N�1 �ðsÞð1=2Þ. It has been shown that A�
ð1=cÞj�ih�j � 0 if j�i 2 rangeðAÞ and c ¼ h�jA�1j�i [13].
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FIG. 2. Average fidelity (f) of asymptotic teleportation as a
function of the number of output ports (N).
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Moreover, A�ð1=cÞðj�ih�jþj�?ih�?jÞ�0 for j�?i such
that h�?j�i ¼ 0, j�?i 2 rangeðAÞ, and c ¼ h�?jA�1j�?i
because h�?j½A� ð1=cÞj�ih�j��1j�?i ¼ c [13]. Repeating
this, it is found that A� ð1=cÞPkj�kih�kj � 0, where j�ki
are mutually orthogonal vectors such that j�ki 2 rangeðAÞ
and h�kjA�1j�ki ¼ c. Therefore,

�ðsÞ1=2 � 1

cðsÞ
X
sz;�

j�ðiÞðs; sz; �Þih�ðiÞðs; sz; �Þj � 0

follows from Eq. (6), and thus YSQðsÞ � �ðiÞðsÞ � 0, which
completes the proof of the optimality.

Let us return to Eq. (2) and investigate the cases of
general O. We need to optimize both f�ig and O to obtain
the best fidelity of asymptotic teleportation. By introducing
~�i ¼ ðOy � 1Þ�iðO � 1Þ and X ¼ OyO, however, the
best entanglement fidelity is obtained by maximizing

F ¼ 1

d2
XN
i¼1

tr ~�iAB�
ðiÞ
AB (6)

under the constraints of ~�i � 0,
P

N
i¼1

~�i ¼ ðX � 1Þ, X �
0, and trX ¼ dN . This is also a semidefinite program. The

dual problem is of minimizing F ¼ dN�2a subject to��
�ðiÞ � 0 and a1� trB� � 0. The constraints are satisfied

if we take � ¼ P
N
i¼1 �

ðiÞ and a ¼ N=dN , and hence we

have F � N=d2. This upper bound is tight for N � d. In
fact, letting fjekig be the set of N orthogonal states on Cd,
the protocol of employing the separable jc i ¼N

N
k¼1 j0iAk

jekiBk
, which results in mutually orthogonal

ðO � 1Þ�ðiÞðOy � 1Þ ¼ ðj0ih0jÞA � ðjeiiheijÞB, achieves
the upper bound. The corresponding bound for the average
fidelity is f � ðdþ NÞ=½dðdþ 1Þ� � fcl, and therefore it
is concluded that N > d is necessary for any protocol to
exceed the classical limit of fidelity.

For N > d, such a construction of N orthogonal states
becomes impossible (even using entangled states), and the
best F may deviate from N=d2. We have solved the semi-
definite program Eq. (6) using the numerical package of
SDPA [14]. The results for d ¼ 2 and N � 6 are plotted by

open circles in Fig. 2. It is found from the figure that the
best fidelity is nearly achieved by the protocol of employ-
ing spin singlets (maximally entangled jc i) and SRM.
Interestingly, although the difference is small, this implies
that a nonmaximally entangled jc i provides a higher
fidelity than that of the maximally entangled jc i. In
Fig. 2, the fidelity for the case of maximally entangled
qutrits (d ¼ 3) and SRM is also plotted, which was ob-
tained by the numerical diagonalization of �. The numeri-
cal investigations suggest that SRM is optimal even in this
case. For the case of maximally entangled qudits with
general d and SRM, it can be shown by the same technique
as used in Ref. [15] that f � 1� dðd� 1Þ=N. Therefore,
the protocol provides a perfect fidelity in the asymptotic
limit for any d.

In summary, we considered a scheme of asymptotic
quantum teleportation where Bob has multiple output ports

and obtains the teleported state by simply selecting one of
the N ports. We showed that, if N pairs of maximally
entangled qubits are employed, the square-root measure-
ment is the optimal measurement performed by Alice. This
protocol provides a perfect fidelity in the asymptotic limit
and nearly achieves the best fidelity of asymptotic tele-
portation. The scheme of asymptotic teleportation provides
a universal programmable processor in a simple and natu-
ral way: To process a state by operation ", teleport the state
by employing j"i ¼ ð1 � "�NÞjc i instead of jc i. The
fidelity of the processor dealing with trace-preserving "
is always equal to or higher than the fidelity of asymptotic
teleportation alone because of the monotonicity such that
fð"ðj�iniÞ; "½�ðj�iniÞ�Þ � fðj�ini;�ðj�iniÞÞ, where � is
the teleportation channel, and therefore an asymptotically
faithful programmable processor is realized.
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