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The local energy defined byHc =c must be equal to the exact energy E at any coordinate of an atom or

molecule, as long as the c under consideration is exact. The discrepancy from E of this quantity is a

stringent test of the accuracy of the calculated wave function. The H-square error for a normalized c ,

defined by �2 � hc jðH� EÞ2jc i, is also a severe test of the accuracy. Using these quantities, we have

examined the accuracy of our wave function of a helium atom calculated using the free comple-

ment method that was developed to solve the Schrödinger equation. Together with the variational

upper bound, the lower bound of the exact energy calculated using a modified Temple’s formula

ensured the definitely correct value of the helium fixed-nucleus ground state energy to be

�2:903 724 377 034 119 598 311 159 245 194 4 a:u:, which is correct to 32 digits.

DOI: 10.1103/PhysRevLett.101.240406 PACS numbers: 03.65.Ge, 03.65.Ca, 31.10.+z

The formulation of a general method for solving the
Schrödinger equation (SE) is one of the most important
subjects in quantum chemistry, although many scientists
believed this important task to be impossible [1]. Recently,
we have proposed the free iterative complement interaction
(ICI) method [2–4], which we refer to in short as the free
complement (FC) method, for solving the SE accurately in
an analytical expansion form, and using this method, we
have obtained very accurate energies and wave functions
with excellent convergence for various systems [5–8]. In
this communication, we examine and prove the ‘‘exact-
ness’’ or the ‘‘high accuracy’’ of the calculated results
using stringent theoretical tests of how well the calculated
wave functions satisfy the SE. For such tests, we have
examined the local energy, H-square error, and the upper
and lower bounds of the exact energy.

Exactness and accuracy of the wave function.—The SE,
Hc ¼ Ec , is a local equation that must be satisfied at any
coordinate. It can also be written as

Hc ðrÞ
c ðrÞ ¼ EðconstÞ ð8 rÞ; (1)

where H is the Hamiltonian and c ðrÞ is the wave function
at a coordinate r. The left-hand side of Eq. (1) is called
local energy, ELðrÞ, as

ELðrÞ � Hc ðrÞ
c ðrÞ : (2)

If c is not an exact wave function, then ELðrÞ may
depend on r. If ELðrÞ is a constant at any point r, then
Eq. (2) corresponds to Eq. (1), which is the SE. Therefore,
the constancy of the local energy at any coordinate r is a
straightforward test of how well the wave function c
satisfies the SE.

Another quantity that is useful to assess the exactness of
a wave function is the H-square error �2, defined by

�2 � hc jðH � EÞ2jc i; (3)

for a normalized c where E ¼ hc jHjc i. The H-square
equation we have utilized previously [2] corresponds to
�2 ¼ 0, which is valid only for the exact wave function.
The value of �2 is always positive and becomes zero only
if c is exact. It is also related to the local energy by

�2 ¼ hEL
2ic 2 � hELi2c 2 ; (4)

where hQic 2 represents the expectation value ofQ over the

weight function jc j2. Thus, �2 is the variance of the local
energy weighted by jc j2.
Information on both the upper and lower bounds, Eupper

and Elower, of the exact energy Eexact is very valuable to
estimate the exact value of the energy. In this case, the
exact energy is guaranteed to lie between Eupper � Eexact �
Elower. When we use the variation principle, the calculated
energy is the upper bound of the exact energy.
There are several theories that produce the lower bound

of the exact energy, and they are related to the H-square
error �2. One method is the Weinstein’s lower bound
energy EW

lower, which is written as [9]

EW
lower ¼ hc jHjc i �

ffiffiffiffiffiffi
�2

p
: (5)

This method is advantageous in that it only needs�2 and
the energy expectation value. However, a problem of this
method is that the quality (accuracy) of this lower bound is
not good enough: it is too low usually to be useful.
Another method was proposed by Temple [10], and is

written as

ET
lower ¼ hc jHjc i � �2

E1 � hc jHjc i : (6)

This method requires hc jHjc i, �2, and in addition, the
exact energy E1 of the first excited state having the same

PRL 101, 240406 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

12 DECEMBER 2008

0031-9007=08=101(24)=240406(4) 240406-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.240406


symmetry as the ground state. In general, the exact excited
state energy E1 is unknown and so we have to modify
Eq. (6). If one replaces the exact energy of the first excited
state E1 with its lower bound energy, then one can obtain
the energy that is lower than the Temple’s lower bound
energy given by Eq. (6). We used the Weinstein’s lower
bound to the first excited state EW

1 as the lower bound

energy to E1 that is given by EW
1 ¼ hc 1jHjc 1i �

ffiffiffiffiffiffiffiffi
�1

2
q

,

where c 1 and �1 are the respective quantities for the first
excited state. Then, E1 � EW

1 . When this further satisfies
EW
1 > hc jHjc i, then we can define the modified Temple’s

lower bound energy by

ET0
lower � hc jHjc i � �2

EW
1 � hc jHjc i ; (7)

and we have the relationship Eexact � ET
lower � ET0

lower.

Importantly, the modified Temple’s lower bound energy
can be calculated using our theory alone. Thus, both the
upper and lower bounds can be calculated using our theory
alone, and we have the inequality

Eupper � Eexact � ET0
lower; (8)

which is mathematically guaranteed. Therefore, strictly we

can say that the exact energy should lie in a definite region
of the energy.
As shown below, the above quantities are important for

examining the accuracy of a wave function. However, there
have been few studies on these quantities [11,12]. A reason
for this is that it is very difficult to obtain a wave function
that shows a constancy in its local energy over a wide
region of coordinates.
Free complement wave function of helium atom.—We

calculated the above quantities using the free ICI or FC
wave function of a helium atom, which was published in
Ref. [5]. This wave function is written as

c ¼ X
i

cis
li tmiuni½lnðsþ �uÞ�ji expð��sÞ; (9)

with the detailed definitions given in Ref. [5]. The loga-
rithm function including u ¼ r12 was used to describe well
the three-particle coalescence region. The energy for the
different order n of the FC method is summarized in
Table V in Ref. [5], and the best energy was correct over
41 digits at an order of n ¼ 27 with a dimension of Mn ¼
22 709. Recently, we have also performed FC calculations
starting with the exponential integral function instead of
the logarithmic function, and have obtained the energy

FIG. 1. Local energy plots of the FC wave functions for orders from n ¼ 5 to 27. The arrows and circles in the left-hand figures show
the digits of the total energy, in which the local energy shown on the vertical axis changes.
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correct to 43 digits at the order n ¼ 27 with Mn ¼ 21 035
[6].

Local energy plots.—Let us first show the local energy
plots of the FC wave function of Eq. (9). Figure 1 shows
plots at different orders up to n ¼ 27. In Fig. 1, the nucleus
is at the origin, one electron is located at z ¼ 0:5 a:u: on
the z axis, and the other electron moves along the z axis
from z ¼ �1:0 to þ1:0, experiencing the nuclear singu-
larity at the origin and the electron singularity at z ¼ 0:5.
The dotted plots were evaluated at intervals of 1=2000 a:u:
The vertical axis shows the relative value of the local
energy EY , which is scaled by the factor " shown on the
top of the vertical axis of each graph. Therefore, the local
energy at each point EL is evaluated from the energy E
shown on each graph and the value of EY from EL ¼ Eþ
"EY .

The top row in Fig. 1 shows plots for n ¼ 5–12 with the
factor " ¼ 10�3. At n ¼ 5, the local energy still oscillates
in the order of 10�3 a:u: and appears not to be constant in
the region 0:0< z < 0:5. At n ¼ 6, the local energy be-
comes almost constant, except for the region very close to
the singularities. At n ¼ 9 and n ¼ 12, the local energy
appears to be constant for the factor of " ¼ 10�3. The
second row in Fig. 1 shows plots for n ¼ 12–21 with " ¼
10�9; i.e., the graphs are scaled up by a factor of 106 from
those in the previous row. Therefore, the vertical axis
value EY shows the variation in the local energy below
the tenth digit after the decimal point, i.e., less than

�2:903 724 377 a:u: The enlarged graph shown for n ¼
12 shows some deviations in the local energy at the sin-

gular points, but as the order increases to n ¼ 15 and n ¼
21, these deviations disappear, and the local energy be-
comes near constant at orders n ¼ 18 and n ¼ 21. The
lowest row shows a similar behavior for the local energy

for a factor of " ¼ 10�15. At n ¼ 27, the local energy
appears to be constant, even with a factor of 10�15.
We further examined closely the behavior of the local

energy in the region of the nuclear and electron singular-
ities. Figure 2 shows these close examinations of the local

energy at n ¼ 27 with " ¼ 10�15 in the very narrow

nuclear singularity region from z ¼ 0:0� 1=2000 to z ¼
0:0þ 1=2000, and in the electron singularity region from

z ¼ 0:5� 1=2000 to z ¼ 0:5þ 1=2000. The plots were
evaluated for intervals of 1=2 000 000 a:u: As shown in
Fig. 2, the local energy showed a high constancy, except

for the very small regions of z ¼ 0:0� 1=200 000 a:u:
around the electron-nucleus singularity, and z ¼
0:5� 1=200 000 a:u: around the electron-electron singu-
larity. Thus, we observed that the local energy calculated
from the FC wave functions of the helium atom [5] shows a
very high constancy when the order n is large.
H-square error and the energy lower bound.—First, we

examined theH-square error�2, defined by Eq. (3). Table I

provides a summary of the values of �2, which rapidly
converge towards zero (exact value) with increasing order

FIG. 2. Local energy plots at n ¼ 27
(Mn ¼ 227 09) around the regions very
close to the electron-nucleus (z ¼ 0) and
electron-electron (z ¼ 0:5) singularities,
where the local energy singularities are
within 1:0� 10�16 and 5:0� 10�17 a:u:,
respectively, for an interval of
1=100 000 a:u:

TABLE I. Convergence of the H-square error �2 and the modified Temple’s energy lower bound, defined in Eqs. (3) and (7),
respectively, with increasing order of the FC wave function n.

Order n Mn
a H-square error �2 Energy lower boundb

5 247 2:934 869� 10�9 �2:903 724 380 97

6 386 4:782 529� 10�10 �2:903 724 377 674

9 1091 1:095 586� 10�15 �2:903 724 377 034 121 066

12 2354 5:007 353� 10�21 �2:903 724 377 034 119 598 317 869

15 4337 1:835 489� 10�24 �2:903 724 377 034 119 598 311 161 704

18 7202 5:372 350� 10�27 �2:903 724 377 034 119 598 311 159 252 393

21 11 111 4:000 913� 10�29 �2:903 724 377 034 119 598 311 159 245 248

24 16 226 5:665 577� 10�31 �2:903 724 377 034 119 598 311 159 245 195 163

27 22 709 1:293 955� 10�32 �2:903 724 377 034 119 598 311 159 245 194 421 785

aNumber of independent functions for order n.
bThe correct figure is expressed in bold face.
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of the FC method. At n ¼ 27, we obtained �2¼
1:293955798978967642728022186398914855�10�32.
Because �2 is a variance (i.e., it is always positive or zero),
and it cannot involve lucky cancellations, such as those
seen in the energy expectation value, this small value indi-
cates that the wave function itself is very accurate at each
coordinate. In general, one can consider that the value offfiffiffiffiffiffi
�2

p
corresponds to the precision of the constancy of the

local energy. Therefore, the scaling factor " shown in Fig. 1

approximately corresponds to the value of
ffiffiffiffiffiffi
�2

p
for each

order.
Using the value of the H-square error �2 one can cal-

culate the energy lower bound. When we used Weinstein’s
formula given by Eq. (5), the lower bound energy EW

lower

was calculated to be�2:903 724 377 034 119 712 a:u: for
n ¼ 27, which has an accuracy to only 16 digits. To obtain
a more accurate lower bound energy without losing any
mathematical strictness, we used the modified Temple’s
formula given by Eq. (7), where we needed the energy
lower bound of the first excited state, Elower

1 , which was

calculated by using Weinstein’s formula. The wave
function we used for the first excited state was the
second solution of the diagonalization of the secular
equation for n ¼ 27. Because the FC calculations in
Ref. [5] were designed to be appropriate only for the
ground state, the description of the excited states ob-
tained was poor: the calculated upper bound energy
was �2:145 974 046 053 596 a:u: and the calculated
Weinstein’s lower bound energy was EW

1 ¼
�2:157 464 627 324 812 a:u: However, we note that the

significant digit of ET0
lower is mostly determined by �2,

and so that even an approximate estimate of Elower
1 is

acceptable.
The modified Temple’s lower bound energy for the

ground state was shown in the final column of Table I. It
can be seen that this energy rapidly converges to the
exact energy from below. The most accurate modified
Temple’s lower bound energy for n ¼ 27 was
�2:903 724 377 034 119 598 311 159 245 194 421 785 a:u:,
while the upper bound energy for n ¼ 27 was �2:903
72437703411959831115924519440444669690537a:u:
[5], where the bold faced characters denote the cor-
rect values judged from the convergence ratio of the
neighboring order series of the FC calculations. Be-
cause our modified Temple’s lower bound energy is
mathematically correct, we can say that the exact
ground state energy of the helium atom must be
sandwiched in the region between these upper and
lower bound energies. Thus, the mathematically guaran-
teed value for the fixed-nucleus nonrelativistic ground
state energy of the helium atom was obtained as
�2:903 724 377 034 119 598 311 159 245 194 4 a:u:, which
is correct to 32 digits.

Conclusions.—In this Letter, we have examined the
local energy properties of the FC wave function of the
helium atom published in Ref. [5]. First, we showed that

the local energy calculated from the FC wave function was
highly constant, and was very close to the ground state
energy almost everywhere, except for the small regions
around the Coulomb singularities. It is with no doubt true
that the present FC wave function is highly accurate. This
was also seen in the very small value of the calculated
H-square error, �2 ¼ 1:294� 10�32 a:u: From our calcu-
lations of the strict upper and lower bound energies, the
exact energy of the ground state of the helium atom in the
nonrelativistic fixed-nucleus case was calculated to an
accuracy within 32 digits. This result numerically supports
that the FC method can provide the exact wave function
and energy to any desired accuracy. This result also pro-
vides an excellent starting point for further studies on the
remaining physical effects, such as relativistic [13] and
quantum electrodynamic (QED) effects. An accurate
theory of error bars is necessary for studies on atoms and
molecules that do not have accurate reference data.
Recently, we have developed a local Schrödinger equa-

tion (LSE) method for solving the FC wave function
without calculating the integrals of the complement func-
tions [14]. This methodology is important, because the
complement functions of the FC method of general atoms
and molecules are not necessarily integratable to calculate
the overlap and Hamiltonian matrix elements necessary for
the variation calculations. The basic strategy of the LSE
method lies in the constancy of the local energy for the
potentially exact wave function. Therefore, the present
proof of the high constancy of the local energy for the
FC wave function of helium provides much credit for the
FC LSE methodology in opening up a new route for
accurately predictive quantum chemistry.

*Corresponding author.

h.nakatsuji@qcri.or.jp
[1] P. A.M. Dirac, Proc. R. Soc. A 123, 714 (1929).
[2] H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000).
[3] H. Nakatsuji, Phys. Rev. Lett. 93, 030403 (2004).
[4] H. Nakatsuji, Phys. Rev. A 72, 062110 (2005).
[5] H. Nakashima and H. Nakatsuji, J. Chem. Phys. 127,

224104 (2007).
[6] Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys.

Chem. Chem. Phys. 10, 4486 (2008).
[7] Y. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Rev.

A 72, 062502 (2005).
[8] H. Nakatsuji, Bull. Chem. Soc. Jpn. 78, 1705 (2005).
[9] D. H. Weinstein, Proc. Natl. Acad. Sci. U.S.A. 20, 529

(1934).
[10] G. Temple, Proc. R. Soc. A 119, 276 (1928).
[11] F.W. King, J. Chem. Phys. 102, 8053 (1995).
[12] T. Kinoshita, Phys. Rev. 105, 1490 (1957).
[13] H. Nakatsuji and H. Nakashima, Phys. Rev. Lett. 95,

050407 (2005).
[14] H. Nakatsuji, H. Nakashima, Y. Kurokawa, and A.

Ishikawa, Phys. Rev. Lett. 99, 240402 (2007).

PRL 101, 240406 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

12 DECEMBER 2008

240406-4


