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Time-reversal mirrors have been successfully implemented for various kinds of waves propagating in

complex media. In particular, acoustic waves in chaotic cavities exhibit a refocalization that is extremely

robust against external perturbations or the partial use of the available information. We develop a

semiclassical approach in order to quantitatively describe the refocusing signal resulting from an initially

localized wave packet. The time-dependent reconstructed signal grows linearly with the temporal window

of injection, in agreement with the acoustic experiments, and reaches the same spatial extension of the

original wave packet. We explain the crucial role played by the chaotic dynamics for the reconstruction of

the signal and its stability against external perturbations.
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The concept of time reversal has captured the imagina-
tion of physicists for more than a century, leading to a vast
theoretical oeuvre, sempiternal discussions, and a few con-
crete experimental realizations. Among them, the works on
spin echoes have been of paramount importance concern-
ing the limits in the reconstruction of an initially prepared
quantum state [1,2]. The time reversal of acoustic waves in
a nonhomogeneous medium was another experimental
deed showing that an initially localized pulse can be accu-
rately reconstructed by an array of receiver-emitter trans-
ducers that reinject the recorded signal [3]. Refocusing of
elastic, as well as electromagnetic, waves has been later
achieved [4–6]. These experiments provoke a natural sur-
prise while yielding reconstructions, that albeit not perfect,
are highly faithful. The relevant questions that arise when
trying to understand these physical realizations of time re-
versal are related with how good a reconstruction can be
achieved and which are the limits set by interactions with
the environment and unavoidable errors in the reversal
protocol.

In the spin echo experiments, the complexity of the phy-
sical system has emerged as a critical component, and the
term of Loschmidt echo (LE) has been coined to describe
setups where many-body physics or chaotic dynamics are
relevant [7]. In particular, the decay of the LE with the
reversal time has been shown to depend on the underlying
classical dynamics [8–10]: classically chaotic systems ex-
hibit a decay rate which, for large perturbations, is bounded
by the Lyapunov exponent characterizing the dynamics.

In the time-reversal mirror (TRM) procedure, the play-
back signal builds up in the region of the original excita-
tion, in the form of a reversed wave amplitude [3]. Thus,
the TRM can be viewed as the wave version of the LE. A
salient feature of the TRM experiments is that, even though
reversal is not perfect [11], the refocusing improves when
the wave propagation occurs in a disordered medium or in
a chaotic cavity, as compared with the homogeneous or

integrable case. Remarkably, a single transducer is enough
in the case of a chaotic cavity [4]. The asymptotic analysis
of the Wigner transform of wave fields in the high-
frequency limit has been used to understand how multiple
scattering enhances the spatial resolution of the refocused
signal [12]. Diagrammatic perturbation theory has been
able to account for the symmetry-induced interference
enhancements in the refocalization observed in disordered
media [13]. The refocusing experiments in chaotic cavities
have been confronted with numerical simulations [4], as
well as ergodicity and control theory [14]. The contrasting
stability properties of TRM with wave and particle propa-
gation through a multiple scattering medium has been
discussed in Ref. [15].
In this Letter, we develop a semiclassical approach for

TRM in chaotic cavities and quantify the quality of the
reconstructed signal in terms of temporal and spatial dis-
persions, as well as possible environmental influences. We
demonstrate the crucial role played by the underlying
classical dynamics and validate our analytical results by
confronting them to numerical simulations.
A high-frequency signal emitted at t ¼ 0 at a position

r0 inside the cavity can be interpreted within the ray pic-
ture as an initial wave packet centered at r0 that evolves
and is recorded by a receiver (or an array of receivers) at
position(s) ri (i ¼ 1; 2; . . . ; N) for times in the interval (t1,
t2). After a waiting time tW > t2, the reemission of the
time-reversed signal is performed in the interval (t02 ¼
2tW � t2, t

0
1 ¼ 2tW � t1). The refocusing is expected at

2tW , that is redefined as the time origin for refocusing [4]
[see Fig. 1(a)]. The signal that can be detected in a point r
at a time t is [16]

F p0
ðr; tÞ ¼ X

i

Z t2

t1

d�Gðr; ri; tþ �Þ

�
Z

dr0G�ðri; r0; �Þc �
p0
ðr0Þ: (1)
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The propagator Gðr; ri; tþ �Þ corresponds to the reemitted
signal, which is obtained by time reversing the evolution of
the initial state with the propagator Gðri; r0; �Þ. We do not
write the initial temporal arguments of the propagators, as
they are taken to be 0. We work in two dimensions and
choose as an initial state a Gaussian wave packet

c p0
ðr0Þ ¼ 1ffiffiffiffi

�
p

�
exp

�
i

@
p0 � ðr0 � r0Þ � ðr0 � r0Þ2

2�2

�
; (2)

centered around r0 and with dispersion �. The initial
momentum p0 sets the energy and direction of the original
signal. The choice of a quantum formalism to represent the
ray picture is motivated by convenience, as we are leaving
aside the delicate issue concerning a quantal recording-
emission process. The quantum formalism is suited to work
with the semiclassical propagator [17]

Gðr00; r0; �Þ ¼ 1

2�i@

X
sðr0;r00;�Þ

ffiffiffiffiffiffi
Cs

p
eiSs=@�ið�=2Þ�s ; (3)

given as a sum over classical trajectories s traveling in a
time � between the two extreme points. We note Ss ¼
Ssðr00; r0; �Þ the action integral along the path, �s the
Maslov index, and Cs ¼ j detð�@Ss=@r

0@r00Þj.
Performing the r0-integral of Eq. (1) by stationary-phase

(see Ref. [18] for the precise conditions of validity of such
an approximation in a chaotic cavity), we can write, for a
single transducer,

F p0
ðr;tÞ¼ �

2�3=2
@
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X
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�
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ð�s0 ��sÞ

� �2

2@2
ðps�p0Þ2

�
; (4)

where ps is the initial momentum of the trajectory s.
We are interested in times t close to the refocusing one,

and positions r near r0; therefore, the dominating contri-
bution comes from the diagonal approximation s0 ’ s lead-
ing to a signal given by

F p0
ðr; tÞ ¼ �

2�3=2
@
2

Z t2

t1

d�Fp0
ðr0; ri; r; �Þ; (5a)

Fp0
ðr0; r00; r; �Þ ¼ X

sðr0;r00;�Þ
Csfp0

ðr0; r00; r;p0Þ; (5b)

fp0
ðr0; r00; r;p0Þ ¼ exp

�
i

@
p0 � ðr� r0Þ � i

@
Est

� �2

2@2
ðp0 � p0Þ2

�
: (5c)

Es is the energy at which the trajectory s is traveled. In
billiards, the magnitude of the momentum modifies the
traveling time but does not affect the path. Noting
ŝðr0; riÞ the geometrical support of the trajectory
sðr0; ri; �Þ with length Lŝ, we have Es ¼ p2

s=2m and ps ¼
ðmLŝ=�Þ, where m is the mass of the particle. In order to
present the calculation in its simplest form, we start by
setting p0 ¼ 0 and the optimal conditions t ¼ 0 and r ¼
r0, which yield [from the last term in the exponent of (5c)]
the maximum refocusing F max ¼ F 0ðr0; 0Þ. In a fully
chaotic system, Cs scales as exp½��s��, where �s is the
largest Lyapunov exponent. Assuming further a uniformly

hyperbolic dynamics [18] and using that in a billiard �s� ¼
�̂Lŝ (with �̂ as an inverse length), we write Cs ¼
2m2�̂Lŝ=�

2 exp½��̂Lŝ�. Noting V 2 ¼ 2@2=m2�2, we
have

F max¼ �m2�̂

�3=2
@
2

X
ŝðr0;riÞ

Lŝe
��̂Lŝ

Z t2

t1

d�

�2
exp

�
�
�
Lŝ

V�

�
2
�
: (6)

The sum over the transient orbits ŝ can be converted into
an integral over trajectory lengths by introducing the den-

sity dNðLÞ=dL ¼ �=ð�̂AÞ expð�̂LÞ (A stands for the
area of the chaotic cavity) [19,20]. Denoting Lj ¼ V tj
(j ¼ 1, 2) and Ld the length of the shortest trajectory
linking r0 and ri, we have

F max ¼ 1

�A

�
ðt2 � t1Þ

Z 1

Ld=L2

dl½1� erfðlÞ�

þ t1
Z Ld=L1

Ld=L2

dl½1� erfðlÞ�
�
; (7)

where erfðxÞ stands for the error function. The assumptions
made on Cs and dNðLÞ=dL are valid for lengths a few
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FIG. 1 (color online). (a) TRM sequence. (b) Reconstructed
signal scaled with A=�T at the emission point r0, close to the
refocusing time t ¼ 0, for the shown billiard. The thick solid line
is the semiclassical prediction [Eq. (13)]. Numerical simulations
for various �T and A: 5000 and 150� 300 (blue dotted line),
10 000 and 150� 300 (green dashed line), and 5000 and 300�
600 (red dash-dotted line). Right inset: reconstructed signal at
t ¼ 0 close to r0 from the semiclassical prediction (solid line)
and simulation (red dash-dotted line) with �T ¼ 5000 andA ¼
300� 600.
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times larger than Ld. However, our approximation is ap-
propriate since we assume that we start recording at times
t1 large enough for the typical contributing trajectories to
feel the chaotic nature of the dynamics. That is, we work
under the hypothesis Ld � L1 < L2, that also allows to
neglect the last integral, leading to

F max ¼ 1ffiffiffiffi
�

p
�A

�T: (8)

The scaling of the refocused signal with the injection
interval �T ¼ t2 � t1 is a quite natural result, experimen-
tally observed in Ref. [4], while the scaling withA has not
been systematically tested so far. In the case where there is
an array with N transducers, we simply have to multiply
the above result by N, but the surprising fact that just one
detector is enough stems from Eq. (8). In order to further
quantify faithfulness of the time-reversal process, we need
to evaluate the temporal and spatial extents of the recon-
structed signal.

For times t close to the refocusing one, we have to
consider the phase mL2

ŝ t=ð2�2@Þ in Eq. (5c). Therefore,

F 0ðr0; tÞ follows the same expression as F max in Eq. (6)
by the change of 1=V 2 into 1=V 2 þ imt=2@. The error
functions resulting from the �-integral have now to be
extended into the complex plane, and after a straightfor-
ward algebra, we find

F 0ðr0; tÞ ¼ F max

1þ iV t=ð ffiffiffi
2

p
�Þ : (9)

The reader can imagine how the general calculation goes
when we treat simultaneously t � 0, r � r0, and p0 � 0.
Instead of presenting such calculation, which results in the
faithful reconstruction of the initial wave packet, we look
at the problem from a different perspective and introduce
the ergodicity hypothesis in order to treat the general case.
The ergodic approach not only provides a second, and
more economical, way of obtaining the general result
without using detailed knowledge of the dynamics, but
also sheds some light into the necessary conditions for
achieving the refocalization condition. The basics of the
ergodic approach is to calculate quantities like
Fp0

ðr0; r00; r; �Þ of Eq. (5b) by averages over phase-space

[21]. Calling r� ¼ r�ðr0;p0Þ and p� ¼ p�ðr0;p0Þ the posi-
tion and momentum, respectively, at time � of a particle
starting at (r0, p0) at time 0, we have

Fp0
ðr0; r00; r; �Þ ¼

Z
dp0dp00�ðr� � r00Þ

� �ðp� � p00Þfp0
ðr0; r00; r;p0Þ: (10)

The double delta function represents the distribution of
classical trajectories. An average over small ranges of
initial and final conditions gives a smooth distribution
which describes the evolution in a statistical sense. For
sufficiently long times, such a distribution is � indepen-
dent, and uniformly distributed on the hyper-surface of
constant energy (which for two-dimensional billiards has

a volume� ¼ 2�mA in phase space). We therefore have

Fp0
ðr0; r00; r; �Þ ¼

Z
dp0dp00�

�
p02 � p002

2m

�
fp0

ðr0; r00; r;p0Þ
2�mA

¼ 1

A

Z
dp0fp0

ðr0; r00; r;p0Þ: (11)

Applying this general procedure to the function fp0
of

Eq. (5c), we have

F p0
ðr; tÞ ¼ ��T

2�3=2
@
2A

Z
dp0 exp

�
i

@
p0 � ðr� r0Þ

� i

@

p02

2m
t� �2

2@2
ðp0 � p0Þ2

�
; (12)

since the integral over � is now trivial. Performing the
Gaussian integral over p0, we obtain a wave packet that
refocalizes with the same shape of the original one, but
with momentum�p0. The magnitude of the signal close to
the maximum refocalization condition is given by

jF p0
ðr; tÞj ¼ F maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðV t=
ffiffiffi
2

p
�Þ2

q exp

�
�ðr� r0 þ p0

m tÞ2
2�2 þ ðV tÞ2

�
:

(13)

Numerical calculations of time-reversal imaging have
been performed in Ref. [4] for a two-dimensional cavity
with the shape of a sliced disk. The signal reconstruction
could be visualized, and a qualitative agreement with the
experimental results was found. Since we dispose now of a
quantitative semiclassical theory of refocusing, it is im-
portant to test our predictions in a stadium billiard, which is
a paradigm of classical chaotic dynamics. We calculate the
evolution of the wave packet through a second order
Trotter-Suzuki algorithm for a discrete Schrödinger equa-
tion. Lattice effects are minimized by considering a0 �
�B � � � Lb, where a0 is the lattice constant, �B the
de Broglie wavelength associated with p0, and Lb the size
of the billiard. We assume that at injection time, all of the
original signal has already decayed.
In Fig. 1(b), we show the numerical results for the time

dependence on the reconstructed signal at r0. The normal-
ized FA=�T are well described by the semiclassical
prediction (thick solid) confirming the scaling with �T
andA of Eq. (8). The normalizing factor for the numerical
results is approximately 1.4 times the semiclassical one.
Such a difference may be due to our discretization of the
quantum problem as well as the difficulties of the diagonal
approximation to recover exact numerical values. The
signal-to-noise ratio does not change appreciably when
the recording time is doubled, while it is improved by
increasing A. In the right inset, we show the spatial
reconstruction of the wave packet around r0 for the refo-
cusing time t ¼ 0. We see that the semiclassical prediction
(thick solid) provides the proper scaling behavior and, up
to the normalization factor, a quantitative description of the
TRM results.
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The numerical implementation of TRM for integrable
geometries results in a refocusing that strongly depends on
the position of the transducers and with a signal hardly
distinguishable from the background. The semiclassical
approach allows to understand this important difference
between chaotic and integrable systems. In the former, the
exponential proliferation of trajectories allows to encode
the information at all times, while in the latter, the regis-
tered signal will be strongly dependent on whether or not
the source and the transducer are connected by a stable
trajectory.

Experimentally, the TRM procedure has been shown to
be robust against local and global perturbations introduced
between the recording and injection phases [3]. Even in the
absence of these perturbations, it is natural to expect that
in any TRM setup, the environment acting during the
reemission is slightly modified respect to that of the record-
ing phase. In the same spirit of the LE studies, we can
model this situation by assuming that in the recording
process, we have a Hamiltonian H that determines

Gðri; r0; �Þ in Eq. (1), while a modified ~Gðr; ri; tþ �Þ is
governed by the slightly different Hamiltonian ~H. For the
LE, the details of the perturbation ~H �H are not impor-
tant, and its effect can be accounted, after some averaging,
by affecting the contribution of each trajectory s by an

additional factor exp½�Lŝ=2~l�, where ~l is an effective
mean-free path associated to the perturbation. In general
~l depends on the velocity of the particle; i.e., for perturba-
tions modeled by an auxiliary impurity potential charac-

terized by a strength �, we have 1=~l ¼ ��2=L2
ŝ [9].

Including this �-dependent phase prevents us from using
the ergodic approach, but working along the lines of
Eqs. (7)–(9), we obtain a maximum refocusing for a non-
static environment given by

F maxð�Þ ¼ 2Vffiffiffiffi
�

p
�A�

Z 1

0
d��2 exp½��2�

�
�
exp

�
� �L1

�V 2

�
� exp

�
� �L2

�V 2

��
; (14)

which reduces to F maxð1� ðt2 þ t1Þ=4~�Þ for t2 � ~�, to
F max exp½�ðt2 þ t1Þ=4~�� for t2 � t1 � ~�, and to
c~�=ð ffiffiffiffi

�
p

�AÞ exp½�c0t1=2~�� for t2 > ~�. The numerical
constants c ¼ 2:94 and c0 ¼ 0:46 are given by rational-
argument values of the � function, and the characteristic
time is defined as ~� ¼ V =ð2 ffiffiffiffi

�
p

�Þ. The proportionality of
the reconstructed signal with the injection interval is
clearly lost in the limit of t2 > ~� since the perturbation
renders ineffective the longest recording times. From the
relevant limits that we have singled out, the second one is
the most important for current experiments. It has a Fermi-
Golden-Rule structure that can be obtained under very
general considerations. For perturbations where the effec-

tive elastic mean-free-path ~l increases with the Lyapunov

exponent of the unperturbed system (i.e. mass distortion in
a Lorentz gas [9]), the characteristic time ~� increases with
the chaoticity of the system. Similarly to the Fermi-
Golden-Rule regime of the LE, such a motional narrowing
effect translates into larger stability, and improved refoc-
alization, for the more chaotic systems, in agreement with
the experimental findings [3].
In summary, we have described the refocalization signal

for the time-reversal mirror procedure through the semi-
classical approximation. The chaotic nature of the under-
lying classical dynamics appears as a key ingredient to
ensure the stability of the refocalization towards perturba-
tions and the proportionality of the recovered signal with
the injection time.
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