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The relaxation of a quantum field stored in a high-Q superconducting cavity is monitored by

nonresonant Rydberg atoms. The field, subjected to repetitive quantum nondemolition photon counting,

undergoes jumps between photon number states. We select ensembles of field realizations evolving from a

given Fock state and reconstruct the subsequent evolution of their photon number distributions. We realize

in this way a tomography of the photon number relaxation process yielding all the jump rates between

Fock states. The damping rates of the n photon states (0 � n � 7) are found to increase linearly with n.

The results are in excellent agreement with theory including a small thermal contribution.
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Quantum process tomography aims at determining ex-
perimentally the superoperator describing the evolution of
a quantum system’s density matrix [1]. This information is
acquired by preparing a set of test states and monitoring
their evolution. The method has been applied so far to spins
in NMR experiments [2], to solid state qubits [3], to vibra-
tional states of atoms [4] and to quantum gate operations
[5,6]. We apply here process tomography to the photon
number distribution of a relaxing field stored in a high-Q
superconducting cavity C, in which Fock states are used as
test states.

Cavity field relaxation is described by a rate equation
which, restricted to the photon number distribution Pðn; tÞ,
is:

dPðn; tÞ
dt

¼ X

n0
Kn;n0Pðn0; tÞ: (1)

A general model (linear coupling to a Markovian bath of
oscillators) leads to [7] Kn;n ¼ ��½ð1þ nbÞnþ nbðnþ
1Þ�, Kn;nþ1 ¼ �ð1þ nbÞðnþ 1Þ, Kn;n�1 ¼ �nbn, all the

other coefficients being 0. Here, � is the field energy
damping rate and nb the mean number of blackbody pho-
tons at temperature T. The lifetime of the n-Fock state is
�1=Kn;n. We report here a complete experimental deter-

mination of the Kn;n0 coefficients.

Our experiment relies on a quantum nondemolition
(QND) procedure [8] counting the number n of photons
stored in C, based on the measurement of cavity-field-
induced light shifts on Rydberg atoms crossing C one by
one. It projects the field onto Fock states with high fidelity.
By detecting long sequences of QND probe atoms along
single field realizations, we follow the field evolution and
observe the jumps between Fock states due to damping
[9,10]. By analyzing an ensemble of field trajectories,
we partially reconstruct the superoperator describing field

relaxation and measure the lifetimes of individual Fock
states, scaling as 1=n at zero temperature [11]. This Letter
provides insights into the physics of these highly nonclassi-
cal states whose production by random [9,10] or determi-
nistic [12] processes has recently been demonstrated.
Our setup [9,13] is depicted in Fig. 1(a). The high-Q

superconducting cavity C, operating at 51 GHz, has a
damping time Tc ¼ 1=� ¼ 0:130 s [14]. A pulsed micro-
wave source S, coupled by diffraction on the mirrors’
edges, can inject into C a coherent field. The cavity field
is probed by a pulsed monokinetic stream (v ¼ 250 m=s)
of rubidium atoms excited in box B to the circular Rydberg
state g (principal quantum number 50). Before C, the

FIG. 1 (color online). (a) Scheme of experimental setup.
(b) Histogram of the transverse atomic pseudospin after interac-
tion with a coherent field in C (initial mean photon number 4.4).
Photon numbers associated to each peak are given. (c) Spin
histogram after selection of the n ¼ 3 Fock state. The n ¼ 2
peak is due to photon loss between selection and measurement.
(d) Same histogram as in (c) conditioned to a post-selection
measurement excluding events in which a photon is lost.
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atoms experience in the low-Q cavity R1 a �=2 pulse
resonant on the transition to level e (circular state with
principal quantum number 51). The atoms enter C in the

superposition ðjei þ jgiÞ= ffiffiffi
2

p
. They undergo nonresonant

light shifts in C, resulting in a phase shift �ðnÞ of the
atomic superposition which is, to first order, linear in n.
The phase shift per photon is set to �0 ’ �=4.

We consider fields with a small probability of having
n > 7. In the Bloch pseudospin representation, the atomic
state at the exit of C points along one out of 8 directions
equally distributed in the equatorial plane of the Bloch
sphere, corresponding to values of n varying from 0
(axis Ox) to 7. After leaving C, the atoms are submitted
to a second �=2 pulse in R2 with an adjustable phase �
with respect to that of R1. The atoms are detected by the
field ionization counter D discriminating the states e
and g. This detection amounts to measuring the atomic
spin at the exit of C in the direction at an angle � with Ox
in the equatorial plane of the Bloch sphere. On average, we
detect one atom every � ¼ 0:24 ms (Tc=� ¼ 540 atoms
detected during Tc).

Figure 1(b) shows a 3D histogram of the transverse
atomic spin (components �x and �y) after interaction

with a coherent field in C. Each point in the Bloch sphere
equatorial plane is obtained by measuring the average
value of spin projections, on a sample of 110 consecutive
atoms crossing C in a 110� ¼ 26 ms time interval, much
shorter than Tc. About 700 atoms are sent across C, out of
which we extract ’ 600 atomic samples of 110 consecutive
atoms. The procedure is repeated 2000 times, yielding
about 106 spin measurements. The histogram clearly shows
that the direction of the atomic spin is quantized.

After a measurement indicating a spin pointing towards
a peak of this histogram, the field is projected onto the
corresponding Fock state. This is checked by correlating
two independent successive samples of 110 atoms along a
single field realization. The first pins down n and the
second remeasures it. Figure 1(c) shows the histogram of
second measurements after selection of n ¼ 3. It exhibits a
main n ¼ 3 peak with an n ¼ 2 satellite due to field
relaxation during the 26 ms time delay between the two
measurements. This satellite can be suppressed by post-
selection. Figure 1(d) displays the histogram of the inter-
mediate results in sequences of 3 measurements for which
the first and the last yield n ¼ 3. The single peak reveals
that, at the intermediate measurement time, the field con-
tains exactly 3 photons. We use such single photon number
peaks to calibrate the phase shifts �ðnÞ.

Although the above method allows us to prepare Fock
states and to observe qualitatively their evolution, it lacks
the resolution required for a precise time analysis. The
interval between two measurements (26 ms) is longer
than the lifetime of n ¼ 7 (Tc=7 ¼ 18 ms). We can how-
ever analyze the data in a more efficient way, making better
use of our atomic detection rate. On a single field realiza-

tion, each atom detected along direction� provides one bit
of information j (j ¼ 0 for e and j ¼ 1 for g). After
detecting N atoms, our knowledge of the field is described
by an inferred photon number probability distribution
pi
NðnÞ linked to the initial distribution P0ðnÞ by Bayes

law: pi
NðnÞ ¼ P0ðnÞ�NðnÞ=Z where Z is a normalization

and �NðnÞ is the product of N functions pðj; �jnÞ, each
describing the information provided by one atomic detec-
tion: pðj;�jnÞ ¼ 1=2½1þ ð�1ÞjðAþ B cos½�ðnÞ þ��Þ�
[10,15]. For successive atoms we use, as in [10], four
different � values (�1:74, �0:87, 0 and 0.54 rad) chosen
so that pðj;�jnÞ is nearly maximal for n ¼ 6, 7, 0 or 1,
respectively. The values A ¼ �0:1 and B ¼ 0:7 are de-
duced from a fit of the data shown in Fig. 1(b). They
deviate from the ideal values (0 and 1, respectively) due
to imperfections of Ramsey pulses. For N ’ 100, pi

NðnÞ
converges to a Dirac peak corresponding to the photon
number given by the atomic spin analysis.
Let us call PNðnÞ the ensemble average hpi

NðnÞi over

many realizations in which the field is initially described
by P0ðnÞ. As the detection process is QND, we have
P0ðnÞ ¼ PNðnÞ for any N. In other terms, P0ðnÞ is a fixed
point of the transform P0ðnÞ ! hP0ðnÞ�NðnÞ=Zi. This
property allows us to determine P0ðnÞ by iteration of this
transform starting with any initial nonvanishing distribu-
tion, for instance the flat one PflðnÞ ¼ 1=8. This method
can be applied for determining Pðn; tÞ at any time t by
selecting in each sequence the sample of N detected probe
atoms starting at this time.
We first reconstruct in this way the evolution of Pðn; tÞ

for a coherent field injected by S at t ¼ 0. A measurement
sequence, involving ’2750 atoms detected in 650 ms, is
repeated 2000 times. We reconstruct Pðn; tÞ with the above
procedure using N ¼ 25 atoms and 20 iterations. At each
time t, we start the iteration with PflðnÞ. The temporal
resolution is ’25� ¼ 6 ms � Tc=7.
Figure 2(a) presents Pðn; tÞ versus t for n ¼ 0 . . . 7 and

Fig. 2(b) the evolution of the average photon number hni ¼P
nnPðn; tÞ. According to theory, hni is exponentially

damped towards an offset corresponding to the blackbody
background. The experimental decay (solid black line) is
indistinguishable from an exponential fit (thin red line)
with a 132 ms time constant agreeing with the indepen-
dently determined value of Tc. The offset yields nb ¼ 0:06,
close to the theoretical value (0.05) of the blackbody field
at the cavity temperature, 0.8 K. The insets in Fig. 2(b)
present snapshots of Pðn; tÞ at three different times with the
corresponding Poisson fits. These histograms show, as
theoretically predicted [7], that the photon number statis-
tics remains Poissonian under the effect of damping (at the
limit where blackbody effects are negligible). The dotted
lines in Fig. 2(a) present a numerical solution of the
theoretical rate equation using the above determined values
for Tc, nb and hni at t ¼ 0. It is in excellent agreement with
the data (solid lines).
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We go now one step further. By monitoring the decay of
selected Fock states, we determine the Kn;n0 coefficients

without any a priori assumption about their values. The
same experimental data are processed in two steps. First,
we analyze separately the 2000 realizations of the experi-
ment in order to select individual Fock states. For each
sequence, we compute, after each atom detection, the new
inferred photon number distribution piðn; tÞ according to
Bayes law [10]. We start the analysis of each sequence with
the Poisson distribution determined above. Between atoms,
we evolve the estimated piðn; tÞ according to the theoreti-
cal rate equation. This method gives, at each time, the best
estimate of the actual photon number distribution in each
realization. Except around quantum jumps, piðn; tÞ is gen-
erally peaked at a single photon number value n0.
Whenever piðn0; tÞ> 0:7 we assume that, within a good
approximation, the n0 Fock state is present in C at this
time, which we take as origin (t ¼ 0) for subsequent
analysis of this Fock state decay.

In a second step, we gather all atomic data following the
selection of a given n0, obtaining thus ensembles of Fock
state-selected field realizations. We apply to each ensemble
the iterative analysis described above, reconstructing for
each value of n0 the subsequent Pn0ðn; tÞ distributions. As
in the case of a coherent state, we useN ¼ 25 atoms and 20
iterations starting with a flat initial distribution. Let us
stress that this reconstruction procedure does not rely on
any theoretical assumption about the form of the relaxation
process. We made use of our theoretical knowledge of the
Kn;n0 coefficients only in the first step of the data process-

ing, in order to optimize the selection of the initial Fock
states.
Figure 3 shows in solid lines the reconstructed Pn0ðn; tÞ

distributions versus time for n0 ¼ 0 to 7 [Figs. 3(a)–3(h)].
In each frame, Pn0ðn0; tÞ is, as expected, maximum at t ¼
0, this initial value giving the fidelity of the Fock state
selection procedure. The other Pn0ðn; 0Þ values are small

[16]. At long time (400 ms) the most probable photon
number is always n ¼ 0, reflecting the irreversible evolu-
tion of the field toward the thermal background close to
vacuum. For n0 ¼ 0 [Fig. 3(a)] P0ð0; tÞ decreases slightly
below 1, while P0ð1; tÞ reaches an equilibrium value close
to 0.06. This describes the thermalization of the initially
empty cavity. For n0 ¼ 1 [Fig. 3(b)] we observe the ex-
ponential decay of P1ð1; tÞ, together with the increase of
P1ð0; tÞ, which describes the damping of a single photon
into vacuum [9]. For n0 > 1 [Figs. 3(c)–3(h)], Pn0ðn0; tÞ
decreases exponentially at a rate increasing with n0 (damp-
ing of the initial Fock state). The Pn0ðn; tÞ functions with
n ¼ n0 � 1; n0 � 2; :::; 1 exhibit bell-shaped variations.
They peak successively, reflecting the cascade of the pho-
ton number from n0 down to vacuum.
We extract the damping coefficients by fitting the first

20 ms of these curves to a solution of Eq. (1) with, as free
parameters, Kn;n0 and Pn0ðn; 0Þ. The procedure is iterative.
We get a first approximation of Kn;n0 with n and n0 � 1
using the data of Figs. 3(a) and 3(b). We then determine the
Kn;n0 with increasing indices by including progressively in
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FIG. 3 (color online). Relaxation of Fock states. (a) to
(h) Evolution of the photon number distributions Pn0 ðn; tÞ start-
ing from the Fock states with n0 ¼ 0 . . . 7 respectively. Same
color code as in Fig. 2(a). Dotted black lines are theoretical.

FIG. 2 (color online). Relaxation of a coherent state.
(a) Evolution of the photon number probabilities Pðn; tÞ (n ¼
0 . . . 7 according to the color code defined in the inset). Black
dotted lines are theoretical. (b) Average photon number hni
versus t (solid black line) and exponential fit (thin red line).
Insets show the photon number distributions (red histogram) and
their Poisson fit (blue lines) at the 3 times shown by arrows.
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the fits the data of Figs. 3(c)–3(h), optimizing at each step
the previously determined parameters.

The obtained �Kn;n values, which represent the decay

rates of the n-Fock states, are shown versus n in Fig. 4(a)
(in units of �). As expected, they vary linearly with n. The
solid straight line corresponds to the theory for nb ¼ 0:06,
while the dotted line shows the expected variation of Kn;n

at T ¼ 0 K. This constitutes, together with the work re-
ported in [17], the first measurement of Fock states life-
times for n > 1, exhibiting clearly the expected 1=n
variation. Moreover, the departure of the experimental
points from the dotted line shows that our procedure is
precise enough to be sensitive to the small effect of the
residual nb ¼ 0:06 photon blackbody field on the lifetime
of Fock states. The nondiagonal Kn;n0 coefficients are

shown [Fig. 4(b)] in a 3D plot, in logarithmic scale. The
big and small bars near the diagonal correspond to the
Kn;nþ1 and Kn;n�1 coefficients, respectively. The latter,

which represent the thermal rates of photon upward jumps,
are predicted to vanish for nb ¼ 0. The logarithmic scale is
convenient to display together the Kn;nþ1 and Kn;n�1 co-

efficients which differ by about 1 order of magnitude for
nb ¼ 0:06. All other nondiagonal coefficients are 0 within
noise. Figure 4(c) shows for comparison the corresponding
theoretical coefficients for nb ¼ 0:06, in excellent agree-
ment with the experiment except for K5;4.

The dotted lines in Fig. 3 are the result of a numerical
integration of Eq. (1) using the values of Kn;n0 and

Pn0ðn0; 0Þ determined by our fit. The excellent agreement

with the experiment over the full 400 ms time interval
shows the accuracy of our method.

This Letter demonstrates the power of QND photon
number measurements to investigate the quantum behavior
of a field stored in a cavity. It probes our understanding of
field relaxation and illustrates the sensitivity of large pho-
ton number states to decoherence, their lifetime being (at
T ¼ 0 K) inversely proportional to their energy. The
method could be used to monitor the evolution of fields
coupled to atomic ensembles used as engineered reser-
voirs. Combining this method with controlled field dis-
placements leads to a time-resolved quantum state
reconstruction [18], which could be used for a determina-
tion of the complete decoherence superoperator.
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Note added.—While completing this Letter, we learned

of a closely related work performed on a superconducting
quantum circuit [17].
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FIG. 4 (color online). Measurement of the photon number
probability damping matrix elements Kn;n0 . (a) Fock state damp-

ing rate�Kn;n versus n. Circles with error bars are experimental.

The solid line gives the theoretical values for nb ¼ 0:06, the
dotted line the expected rates for nb ¼ 0. (b) 3D plot of the
measured nondiagonal elements Kn;n0 in units of � (log scale).

(c) Theoretical 3D plot of Kn;n0 (n � n0) in units of � for nb ¼
0:06 (log scale).
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