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We use the Gutzwiller variational theory to investigate the electronic and magnetic properties of fcc

nickel. Our particular focus is on the effects of the spin-orbit coupling. Unlike standard relativistic band-

structure theories, we reproduce the experimental magnetic-moment direction and we explain the change

of the Fermi-surface topology that occurs when the magnetic-moment direction is rotated by an external

magnetic field. The Fermi surface in our calculation deviates from early de Haas–van Alphen results. We

attribute these discrepancies to an incorrect interpretation of the raw de Haas–van Alphen data.
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The limitations of density functional theory (DFT) when
treating the electronic and magnetic properties of transition
metals become evident most clearly in the case of nickel.
The DFT cannot reproduce gross features such as the width
of the 3d bands (4.5 eV versus 3.3 eV experimentally [1–
3]), nor important details such as the exchange splitting.
The exchange splitting in the DFT is almost 0.7 eV and
rather isotropic over the Fermi surface, whereas, experi-
mentally, it is found to be much smaller and strongly
orbital dependent: �eg � 0:17 eV and �t2g � 0:33 eV.

As a result, even the Fermi-surface topologies do not
match, because of the position of the X2;# energy: above
the Fermi energy (EF) in DFT, yet below EF experimen-
tally; thus only one hole ellipsoid exists around the X point,
versus two in DFT [4,5].

More limitations of DFT become evident when the
effects of the spin-orbit coupling are considered. The mag-
netic anisotropy energy (MAE) has the wrong sign for
nickel (and for cobalt), while it has the correct sign for
iron, yet is too small by a factor of 3 [6]. In nickel, the easy
axis is along [111] and approximately 3 �eV per atom are
needed to rotate the magnetic-moment axis into the [001]
direction [7,8]. Moreover, a low-temperature study of the
magnetic anisotropy constants K1, K2, K3 by Gersdorf [8]
reveals a change in the Fermi-surface topology when the
magnetic-moment axis is rotated into the [001] direction:
A small second hole ellipsoid appears around the Xð001Þ
point, but not around the Xð100Þ and Xð010Þ points, now
inequivalent to Xð001Þ because of the underlying tetrago-
nal symmetry.

It is generally accepted that the discrepancies between
the DFT and the experimental results are mainly caused by
an insufficient treatment of the electronic correlation in an
effective one-particle theory. In the past, all attempts to
combine the DFT with more sophisticated correlated elec-
tron theories have only led to partial improvements of the
results for nickel; see, e.g., the GW and dynamical mean-
field theory (DMFT) approximations in Refs. [9–11].
Despite their merits, the DMFT calculations have, for
numerical reasons, an energetic resolution which is too

low to tackle the subtle electronic properties of nickel. A
high resolution is mandatory, in particular, for a proper
treatment of the spin-orbit coupling effects in transition
metals.
In a recent work [4] we showed that a generalized

Gutzwiller theory provides a consistent picture of the
quasiparticle band structure of nickel. Neglecting spin-
orbit coupling, all basic problems of the DFT calculations
on nickel have been resolved. Our theory employed ap-
proximately 210 variational parameters representing the
occupancies of all atomic multielectron states within an
open 3d shell (see below).
In this Letter we present results for the case when spin-

orbit coupling is included. In order to cope with this
complication, the Gutzwiller theory had to be extended
[12] to allow for rotations in the eigenvector space of the
atomic multielectron states, resulting in many more varia-
tional parameters. Employing this generalization we obtain
the correct MAE, and, more importantly, reproduce the
change in the Fermi-surface topology found by Gersdorf.
To investigate transition metals we start from multiband

Hubbard models of the general form

Ĥ ¼ X

i�j;�;�0
t�;�

0
i;j ĉyi;�ĉj;�0 þX

i

Ĥloc;i ¼ Ĥ0 þ Ĥloc: (1)

Here, the first term describes the hopping of electrons
between spin-orbital states �;�0 on lattice sites i; j, re-

spectively. The Hamiltonian Ĥloc;i ¼ ĤC;i þ Ĥcf;i þ ĤSO;i

contains all local terms; i.e., the two-particle Coulomb

interaction ĤC;i, the crystal-field energies Ĥcf;i, and the

spin-orbit coupling ĤSO;i. In the case of nickel, we work

with a basis of 3d, 4s, and 4p orbitals.
The hopping parameters in the one-particle Hamiltonian

Ĥ0 and the crystal-field energies in Ĥcf are determined by
means of a tight-binding fit to the paramagnetic DFT band
structure [4,12]. In principle, a self-consistent ‘‘local den-
sity approximation ðLDAÞ þ Gutzwiller’’ scheme as pro-
posed in Ref. [13] could be employed. For nickel, we do
not expect significant changes of the results because the

PRL 101, 236404 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

5 DECEMBER 2008

0031-9007=08=101(23)=236404(4) 236404-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.236404


band renormalization and the exchange splittings are mod-
erate. Moreover, in the presence of the spin-orbit coupling
the LDAþ Gutzwiller method is numerically very
demanding.

Because of the large bandwidth of the 4s and 4p bands,
only the Coulomb interaction within the 3d shell is taken
into account. The spherical approximation is used; i.e., we
express the Coulomb interaction through the three Racah
parameters A, B, and C [14]. In order to reproduce the
experimental d bandwidth in our approach, we need a
Racah parameter A ¼ 9 eV. Note that the results do not
depend on the value of A very sensitively; i.e., we find
similar results for a range of A � 8–10 eV. The value of A
would be much smaller if we used a more restricted basis
set; e.g., A � 3–4 eV reproduces the correct bandwidth
renormalization for an (artificial) pure 3d-band model.
The Racah parameters B and C are assumed to be close
to their atomic values [14], B ¼ 85 meV and C ¼
400 meV. The spin-orbit coupling parameter � in the
spin-orbit Hamiltonian

Ĥ SO;i ¼
X

��0

�

2
h�jl̂x ~�x þ l̂y ~�y þ l̂z ~�zj�0iĉþi;�ĉi;�0 (2)

is chosen as � ¼ 80 meV. Note that the Hamiltonian (2)
only contains d orbitals.

In the Gutzwiller theory, the variational ansatz
[12,15,16]

j�Gi ¼ P̂Gj�0i ¼
Y

i

P̂ij�0i (3)

is used to investigate the multiband Hubbard model (1).
Here, j�0i is a normalized single-particle product state and
the local Gutzwiller correlator is defined as

P̂ i ¼
X

�;�0
��;�0 j�iiih�0j: (4)

The states j�ii form some arbitrary basis of the atomic
Hilbert space on site i and the (complex) numbers ��;�0 are

variational parameters. For nickel, we work with a corre-
lation operator (4) in which the states j�ii are the eigen-

states of the atomic Hamiltonian ĤC;i. The nondiagonal

elements of the variational parameter matrix ��;�0 are

assumed to be finite only for states j�i; j�0i which belong
to the same atomic multiplet. This is consistent with the
spherical approximation for the Coulomb interaction. In
the case of nickel, it is sufficient to work with nondiagonal
parameters ��;�0 in the d7, d8, and d9 shells. We assume

translational invariance and skip lattice indices for local
quantities.

The expectation value of the Hamiltonian (1) can be
calculated analytically for the Gutzwiller wave function (3)
in the limit of infinite spatial dimensions [16]. We use the
exact results in this limit as an approximation for our three-
dimensional model system. In infinite dimensions one finds

hĤloc;ii�G
¼ X

�1...�4

��
�2;�1

��3;�4
Eloc
�2;�3

m0
�1;�4

(5)

for the expectation value of Ĥloc;i in (1), where Eloc
�2;�3

�
h�2jĤloc;ij�3i and m0

�1;�4
� hðj�1ih�4jÞi�0

. These local ex-

pectation values are readily calculated by means of Wick’s
theorem. For the expectation value of a hopping operator in
(1) one finds

hĉyi;�1
ĉj;�2

i�G
¼ X

�0
1
;�0

2

q
�0
1

�1
ðq�0

2
�2
Þ�hĉy

i;�0
1
ĉj;�0

2
i�0

: (6)

The renormalization matrix q�
0

� in (6) can be calculated
most easily when an orbital basis is used which has a

diagonal local density matrix with respect to j�0i, C0
�;�0 �

hĉyi;�ĉi;�0 i�0
¼ ��;�0n0�. If C

0
�;�0 is nondiagonal for a one-

particle product state j�0i one can always transform the
orbital basis in order to make C0

�;�0 diagonal. Then, the

renormalization matrix in (6) reads

q�
0

� ¼ 1

n0
�0

X

�1...�4

��
�2;�1

��3;�4
h�2jĉy�j�3ihðj�1ih�4jĉ�0 Þi�0

;

(7)

where, again, the expectation value with respect to j�0i is
calculated with Wick’s theorem.
The variational ground-state energy must be minimized

with respect to the variational parameters ��;�0 and the one-

particle product wave functions j�0i. The optimum state
j�0i is the ground state of the effective one-particle
Hamiltonian [12,17]

Ĥ eff
0 ¼ X

i�j;�;�0
~t�;�

0
i;j ĉyi;�ĉj;�0 þ X

i;�;�0
��;�0 ĉyi;�ĉi;�0 (8)

with the renormalized hopping matrix elements

~t �1;�2

i;j ¼ X

�0
1
;�0

2

q�1

�0
1
ðq�2

�0
2
Þ�t�0

1
;�0

2

i;j (9)

and the Lagrange parameters ��;�0 which are used to

optimize the energy with respect to the local density matrix
C0
�;�0 . Within a Landau Fermi-liquid approach one can

further show [12,17] that the eigenvalues E�ðkÞ of Ĥeff
0

are the quasiparticle excitation energies that can be com-
pared, for example, to angle-resolved photoemission spec-
troscopy experiments. Most important for the quasiparticle
band structure are the Lagrange parameters �d

�;�0 for the d

orbitals. The two (diagonal) Lagrange parameters for the s
and p orbitals are adjusted in order to fix the total
d-electron number [18].
The inclusion of spin-orbit coupling complicates the

numerical minimization significantly. Both the d part of
the local density matrix C0

�;�0 and of the hopping renor-

malization matrix (7) are no longer diagonal. The number
nie of independent elements depends on the magnetic-
moment direction; we find nie ¼ 22 for ~� k ½111� and
nie ¼ 18 for ~� k ½001�. As a consequence of the reduced
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symmetry, we could work with up to nie independent
d-shell Lagrange parameters �d

�;�0 in order to minimize

the total energy. Numerically, however, such a minimiza-
tion would be quite costly since each variation of these
parameters involves many momentum-space integrations.
We therefore work with a simplified effective Hamiltonian

~̂H
eff
0 that contains effective parameters only for all physi-

cally relevant one-particle terms.
In cubic symmetry, there exist only four independent

matrix elements of the local (d electron) density matrix.
The trace of the matrix is fixed by the total d-electron
number. The three remaining matrix elements are governed
by parameters �d

�;�0 which are given by the orbital-

dependent exchange fields �t2g ;�eg and the effective

crystal-field splitting �effCF. The noncubic symmetry result-

ing from the addition of the spin-orbit coupling adds many
more formally independent �d

�;�0 terms. Both for ~� k
½001� (tetragonal symmetry) and for ~� k ½111� (trigonal
symmetry) there are two more exchange fields and two
more crystal-field splittings. All these eight terms are in-

cluded in our simplified effective Hamiltonian ~̂H
eff
0 . In the

spirit of the spherical approximation [19], a Hamiltonian

Ĥeff
SO is included in ~̂H

eff
0 that has the same form as ĤSO only

with � replaced by �eff . As a result, we have to minimize
the total energy with respect to nine ‘‘external’’ parameters

in our simplified Hamiltonian ~̂H
eff
0 .

The numerical minimization is much more time-
consuming for a system with spin-orbit coupling than
without. First, spin-orbit coupling requires the
momentum-space integration to be extended from 1=48th
to the full Brillouin zone. Furthermore, the small values of
the MAE necessitate a much finer mesh for the
momentum-space integration. Second, the energy needs
to be minimized with respect to nine external variational

parameters in ~̂H
eff
0 . Altogether, the minimization of the

total energy is approximately 104 times more time-
consuming for a system with spin-orbit coupling than in

the absence of ĤSO.
We carried out the minimization of the variational en-

ergy with respect to the ‘‘internal’’ parameters ��;�0 and the

external parameters for both magnetic-moment directions
~� k ½111� and ~� k ½001�. The optimum value of the effec-
tive spin-orbit coupling is �eff � 68 meV in both cases,
about 15% smaller than the bare value � ¼ 80 meV. In our
calculations for nickel, the MAE is EMAE � 3:5 �eV per
atom, quite close to the experimental value Eexpt �
3:0 �eV. Note that the MAE has to be calculated quite
carefully within the Gutzwiller approach. In particular, one
has to keep in mind that any approximation on the parame-
ters ��;�0 that reduces the variational flexibility may lead to

a grossly overestimated MAE. This is a serious problem, in
particular, in the case of iron. For nickel, however, a mixing
of states j�i; j�0i has little effect on the variational energy,
and even a diagonal variational parameter matrix ��;�0 �

��;�0 would lead to reasonable results, i.e., EMAE �
10 �eV per atom. The absolute value of the MAE mildly
depends on the parameters for the spin-orbit coupling �
and the Racah-C; e.g., an increase of � by 50% doubles the
MAE. However, the sign of the MAE is a robust result of
our calculation.
In Figs. 1 and 2 we show the quasiparticle band structure

that arises from our calculation around the X points Xz �
ð001Þ and Xx � ð100Þ. When the magnetic moment is
along the easy axis, the band structure around bothX points
coincides and the minority state X2# is below the Fermi

FIG. 1. Quasiparticle band structure along the � line around
the Xz point of the Brillouin zone for magnetic-moment direc-
tions ~� k ½001� and ~� k ½001�. The inset shows an enlarged view
of the band structure around the Fermi energy which displays the
additional hole ellipsoid for ~� k ½001� more clearly.

FIG. 2. Same as in Fig. 1 but around the Xx point. Note that the
X2# band is below the Fermi energy for both magnetic-moment

directions.
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energy [20]. For a magnetic moment along the [001]
direction, however, the two states X2# have different ener-
gies. The X2# state at Xx remains below the Fermi level,

whereas the corresponding state at Xz creates a new hole
pocket around this X point. This is the scenario proposed
by Gersdorf [8].

In Fig. 3 we show Fermi-surface cuts that we find within
our Gutzwiller theory. The experimental values are taken
from de Haas–van Alphen experiments by Tsui [5] and by
Stark as reported in Ref. [21]. The agreement is quite
satisfactory along high-symmetry lines, whereas there are
significant discrepancies away from them. We do believe
that the wiggles that appear in the experimental data are, in
fact, spurious and we propose to redo these measurements.
Now, instead of constructing the Fermi surface from those
raw data, as it was done in Ref. [21], we suggest a direct
comparison of the experimental de Haas–van Alphen sig-
nal with our corresponding theoretical data.

In summary, we have resolved the long-standing prob-
lem to explain theoretically the electronic and magnetic
properties of elementary fcc nickel. Our calculations are
based on the Gutzwiller theory which is a powerful tool for
the investigation of Fermi-liquid systems with medium to
strong Coulomb interaction. For such systems, state-of-
the-art band-structure theories usually fail. Our results for
the quasiparticle bands are in very good agreement with
angle-resolved photoemission spectroscopy experiments
and we find the experimental Fermi-surface topology.
Furthermore, we explain the subtle effects that the spin-
orbit coupling has in nickel. Our theory yields the correct
magnetic anisotropy energy, and we confirm the Gersdorf
scenario: The Fermi-surface topology changes around the
X point (001) when the magnetic-moment direction is
rotated from ~� k ½111� to ~� k ½001� by an external mag-
netic field.
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