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In this Letter, weak-turbulence theory is used to investigate interactions among Alfvén waves and fast

and slow magnetosonic waves in collisionless low-� plasmas. The wave kinetic equations are derived

from the equations of magnetohydrodynamics, and extra terms are then added to model collisionless

damping. These equations are used to provide a quantitative description of a variety of nonlinear

processes, including parallel and perpendicular energy cascade, energy transfer between wave types,

‘‘phase mixing,’’ and the generation of backscattered Alfvén waves.
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Turbulence at length scales smaller than the collisional

mean free path �mfp plays a central role in a wide range of

astrophysical and laboratory plasmas. In general, the
analysis of waves and turbulence at scales <�mfp requires

the use of kinetic theory. However, in some cases fluid
models are approximately valid even at such collisionless
scales. For example, if � ¼ 8�p=B2 � 1, where p is the
pressure and B is the magnetic field, then magnetohydro-
dynamics (MHD) provides an approximately correct de-
scription of the fast magnetosonic wave (‘‘fast wave’’)
when � < �mfp and ! � �i, where � is the wavelength

and �i is the proton cyclotron frequency [1]. Similarly,
MHD accurately describes both Alfvén waves and aniso-
tropic Alfvén-wave turbulence when ri � � < �mfp and

! � �i, where ri is the proton gyroradius [1,2]. MHD is
approximately accurate in these cases because the dynam-
ics are governed primarily by magnetic forces and inertia,
while the pressure tensor and collisionless damping play
only a minor role. In this Letter, MHD is used to model
turbulence at length scales�ri and<�mfp and frequencies

��i in low-� plasmas. To account for the strong colli-
sionless damping of slow magnetosonic waves and the
weak collisionless damping of fast waves [1], extra damp-
ing terms are added to the equations for the wave power
spectra. Although this approach is only an approximation
to the full kinetic behavior of the plasma, the comparative
simplicity of MHD makes it possible to describe the phys-
ics within the MHD model in great detail and thereby gain
useful insight into the full problem.

The basic phenomenology of MHD turbulence depends
on whether the turbulence is weak or strong, which in turn
depends on the value of !k�k, where !k is the linear wave
frequency at wave vector k and �k is the time scale on
which the fluctuations at wave vector k evolve due to
nonlinearities. If j!kj�k � 1, then the turbulence is
weak, the fluctuations can be approximated as a collection
of small-amplitude waves, and the interactions between
waves can be analyzed using perturbation theory [3,4].
On the other hand, if j!kj�k & 1, then the fluctuations
are not wavelike and the turbulence is strong. In MHD,
�k is at least as large as �ðk�vkÞ�1, where �vk is the rms

amplitude of the velocity fluctuation at scale k�1. Thus, the
condition j!kj�k � 1 is satisfied provided j!kj � k�vk.
An important point is that the weak and strong turbu-

lence limits can apply to different components of the
turbulence within a single plasma [5–7]. For Alfvén waves,
!k ¼ �kzvA, where vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
is the Alfvén speed,

�0 is the background density, and B0 ¼ B0ẑ is the back-
ground magnetic field. As a result, Alfvén-wave turbulence
is strong for sufficiently small jkzj=k?, where k? ¼ k�
kzẑ. On the other hand, Alfvén waves with jkzj * k? and
�vk � vA are weakly turbulent. Similarly, fast waves
satisfy !k ’ �kvA in low-� plasmas, and are thus weakly
turbulent provided �vk � vA. This Letter focuses on weak
turbulence, but a method to account for strong-Alfvén-
wave turbulence is also described.
The equations of ideal MHD are

@�

@t
þ r � ð�vÞ ¼ 0; (1)

�

�
@v

@t
þ v � rv

�
¼ �r

�
pþ B2

8�

�
þ B � rB

4�
; (2)

@B

@t
¼ r� ðv� BÞ; (3)

where � is the density and v is the velocity. The specific
entropy [/ lnðp���Þ] is taken to be a constant (where � is
the ratio of specific heats). Each fluid quantity is taken to
be the sum of a uniform background value plus a small-
amplitude fluctuation: B ¼ B0ẑþ �B, p ¼ p0 þ �p,
� ¼ �0 þ ��, and v ¼ v0 þ �v, with v0 � �v � vA.
The (spatial) Fourier transforms of �v and b �
�B=

ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
can be written as

v k ¼ va;kêa;k þ vf;kk̂? þ vz;kẑ;

b k ¼ ba;kêa;k þ bf;kêf;k;

where êa;k ¼ ẑ� k̂?, k̂? ¼ k?=k?, and êf;k ¼
êa;k � k=k. The Alfvén-wave amplitudes at wave vector

k are

a�k ¼ 1ffiffiffi
2

p ðva;k 	 ba;kÞ:
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The fast and slow-wave amplitudes, f�k and s�k , are given
by

w ¼ 2�1=2M � u;
where w ¼ ðfþk ; f�k ; sþk ; s�k Þ, u ¼ ðhk; vf;k; vz;k; bf;kÞ, hk ¼
cs�k=�0, cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p0=�0

p
is the sound speed, and �k is the

Fourier transform of ��. The matrixM is an infinite series

in powers of " ¼ cs=vA ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
��=2

p
. To order "2,

M ¼
"� 1 "2�	 �1þ "2�2=2
�"� 1 "2�	 1�"2�2=2

1�"2�2=2 �"2�	 1 "�
�1þ"2�2=2 �"2�	 1 �"�

0
BBB@

1
CCCA;

where 	 ¼ cos
, � ¼ sin
, and 
 is the angle between k
and ẑ. The Fourier transforms of Eqs. (1) through (3),
expressed in terms of s�k , a

�
k , and f�k , become

@s�k
@t

þ i!�
s;ks

�
k ¼ N�

s;k; (4)

@a�k
@t

þ i!�
a;ka

�
k ¼ N�

a;k; (5)

@f�k
@t

þ i!�
f;kf

�
k ¼ N�

f;k; (6)

where the right-hand sides are the nonlinear terms, !�
a;k ¼

�kzvA, and, to lowest order in ",!
�
s;k ¼ �kzcs and!

�
f;k ¼

�kvA.

The power spectra are defined by the equations
hs�k ðs�k1Þ?i ¼ S�k �ðk� k1Þ, ha�k ða�k1Þ?i ¼ A�

k �ðk� k1Þ,
and hfþk ðfþk1Þ?i ¼ Fk�ðk� k1Þ, where h. . .i denotes an

ensemble average. The quantity A�
k (S�k ) is proportional

to the energy per unit volume in k space of Alfvén waves
(slow waves) propagating in the�z direction. The quantity
Fk is proportional to the energy per unit volume in k space
of fast waves propagating in the k direction. Cylindrical
symmetry about the z axis is assumed, so that S�k ¼
S�ðk?; kz; tÞ, A�

k ¼ A�ðk?; kz; tÞ and Fk ¼ Fðk?; kz; tÞ.
In the weak-turbulence limit, the wave kinetic equations

can be obtained from Eqs. (4) through (6) using the stan-
dard techniques of [3,4]. These equations express @S�k =@t,
@A�

k =@t, and @Fk=@t as series in powers of ". As written
below, the lowest-order terms in these series are / "�2,
contain S�k , and are associated with the slow-wave density

fluctuation, �k ’ kzvz;k�0=!
�
s;k, which is a factor "�1 csc


larger than the fast-wave density fluctuation, �k ’
k?vf;k�0=!

�
f;k, when vz;k ¼ vf;k [8]. Although propor-

tional to "�2, these terms may nevertheless be small,
because strong collisionless damping [1] makes S�k much

smaller than A�
k and Fk. In this Letter, the "

�2S�k terms are

retained, but the nonlinear terms containing S�k at higher

order in " are dropped, with the exception of the �ðqzÞ term
in Eq. (7), which is retained for reasons discussed below.
Of the terms that do not contain S�k , only the leading-order
terms (/"0) are kept. The wave kinetic equations then
become

@S�k
@t

¼ �

4vA

Z
d3p d3q �ðk� p� qÞ½�ðqzÞ4k2? �m2ðAþ

q þ A�
q ÞðS�p � S�k Þ þ �ðp� qÞk2z l2FpF�q þ �ðpz � qzÞk2z l2Aþ

p A
�
q

þ �ðpz þ qÞk2z �l2ðAþ
p Fq þ A�

p F�qÞ þ �ðpz � qÞk2z �l2ðAþ
p F�q þ A�

p FqÞ
 � 2��
s;kS

�
k ; (7)

@Aþ
k

@t
¼ �

4vA

Z
d3pd3q�ðk�p�qÞ

�
�ðqzÞ8ðk?n �mÞ2A�

q ðAþ
p �Aþ

k Þþ�ðkzþpzþqÞkz�q�pkðkzA�
p F�qþpzF�qA

þ
k þqA�

p A
þ
k Þ

þ�ðkzþpz�qÞkz�q�pkðkzA�
p FqþpzFqA

þ
k �qA�

p A
þ
k Þþ�ðkz�pþqÞkzMpk�qðkzFpF�q�pF�qA

þ
k þqFpA

þ
k Þ

þ�ðq�kzÞpzA
þ
k

�
2ðkzþpzÞFqþpzq

@Fq

@q

�
þ�ðqþkzÞpzA

þ
k

�
2ðkzþpzÞF�qþpzq

@F�q

@q

�

þ"�2k2zðSþp þS�p Þ½�ðq�kzÞ �m2ðFq�Aþ
k Þþ�ðqþkzÞ �m2ðF�q�Aþ

k Þþ�ðpzÞm2ðAþ
q �Aþ

k Þ
þ�ðkzþqzÞm2ðA�

q �Aþ
k Þ
þ�ðqzþkzÞ4k2zAþ

k

@

@qz
ðqzA�

q Þ
�
�2�þ

a;kA
þ
k ; (8)

@Fk

@t
¼ �

4vA

Z
d3p d3q �ðk�p�qÞ

�
9sin2
½�ðk�p�qÞkqFpðFq�FkÞþ�ðkþp�qÞkðkF�pFqþpFqFk�qF�pFkÞ


þ�ðk�pzþqzÞk�kpqðkAþ
p A

�
q �pzA

�
q FkþqzA

þ
p FkÞþ�ðk�pz�qÞkMkpqðkAþ

p Fq�pzFqFk�qAþ
p FkÞ

þ�ðkþpz�qÞkM�k�p�qðkA�
p FqþpzFqFk�qA�

p FkÞþ�ðk�qÞk�3pzFk

�
kz

@

@q
ðq4FqÞ�k2qz

@

@q
ðq2FqÞ

�

þ"�2k2ðSþp þS�p Þ½�ðk�qÞm2ðFq�FkÞþ�ðk�qzÞ �m2ðAþ
q �FkÞþ�ðkþqzÞ �m2ðA�

q �FkÞ


þ�ðk�qzÞpzFk

�
2kzA

þ
q þkpz

@Aþ
q

@qz

�
þ�ðkþqzÞpzFk

�
2kzA

�
q �kpz

@A�
q

@qz

��
�2�f;kFk; (9)
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where �kpq ¼ �ðk; p; qÞ ¼ k�2ðk?l þ 2p?m þ 2q?nÞ2,
Mkpq ¼ Mðk; p; qÞ ¼ k�2½k? �l þ p?ðcos� � 1Þ �m þ
kðsin�Þ �n
2, � is the angle between ẑ and q, F�q ¼
Fðq?;�qz; tÞ, and ��

s;k, �
�
a;k, and �f;k are the linear damp-

ing rates. The partial derivative @Fq=@q is taken at constant
�, and the partial derivative @Aq=@qz is taken at constant
q?. In the triangle with sides of lengths k?, p?, and q?, the
interior angles opposite the sides of length k?, p?, and q?
are denoted �k, �p, and �q, and l ¼ cos�k, m ¼ cos�p,
n ¼ cos�q, �l ¼ sin�k, �m ¼ sin�p, and �n ¼ sin�q. The
equation for @A�

k =@t is obtained by setting A�
k ! A	

k ,
Fk ! F�k, S

�
k ! S	k , and �þ

a;k ! ��
a;k in Eq. (8).

The ‘‘collision integrals’’ on the right-hand sides of
Eqs. (7) through (9) represent the effects of resonant
three-wave interactions and sum over all wave number
triads involving k that satisfy the resonance conditions k ¼
pþ q and !k ¼ !p þ!q, where !k is the frequency at

wave number k. When Aþ
k ¼ 0 at some wave vector k1, the

only nonvanishing terms in @Aþ
k =@t are non-negative at k1.

Analogous statements hold for A�
k , S�k and Fk. Equa-

tions (7) through (9) thus ensure that the spectra remain
non-negative. When the linear damping terms are dropped,
Eqs. (7) through (9) conserve the energy per unit massR
d3k ðAþ

k þ A�
k þ 2Fk þ Sþk þ S�k Þ=2 and the pseudo-

momentum
R
d3k ½Aþ

k � A�
k þ 2ðcos
ÞFk þ "�1ðSþk �

S�k Þ
=ð2vAÞ. When the equation for @hvzi=@t is taken into

account, it can be shown that resonant three-wave inter-
actions also conserve the cross helicity hv �Bi and mo-
mentum h�vzi.

At kz ¼ 0, the only nonzero term in the collision integral
in Eq. (8) is the term proportional to �ðqzÞ. This term
represents interactions between three Alfvén waves
(‘‘AAA interactions’’), which transfer Alfvén-wave energy
at all kz to larger k? but not towards larger jkzj [9–14]. In
AAA interactions, each Alfvén-wave type (aþ or a�) is
cascaded by the other Alfvén-wave type. Thus, if
A	ðk?; 0Þ ¼ 0 [where A	ðk?; 0Þ denotes A	

k evaluated at

kz ¼ 0], then the AAA term in @A�
k =@t vanishes. A

Zakharov transformation can be used to show that

A�ðk?; 0Þ / k�n�
? is a steady-state solution to Eq. (8) for

kz ¼ 0 in the absence of dissipation, provided nþ þ n� ¼
6, as in the incompressible case [12]. When dissipation is
included, these power laws become approximate solutions
for A�ðk?; 0Þ within the inertial range. The Alfvén-wave
spectra at kz ¼ 0 are not affected by the value of A�

k at

nonzero kz or by the slow-wave or fast-wave spectra.
At kz ¼ 0, the only nonzero term on the right-hand side

of Eq. (7) is the term / �ðqzÞ, which represents the mixing
of slow waves by Alfvén waves, which transfers slow-wave
energy to larger k? but not to larger jkzj. This term is
identical to the expression describing the mixing of a
passive scalar by weak Alfvén-wave turbulence, with S�k
replacing the passive-scalar spectrum. In the ‘‘imbal-
anced’’ case in which Aþðk?; 0Þ � A�ðk?; 0Þ within the
inertial range, the quantity (Aþ

q þ A�
q ) in this ‘‘passive-

scalar mixing term’’ can be approximated as simply Aþ
q . If

Aþðk?; 0Þ / k�nþ
? , a Zakharov transformation can then be

used to show that S�ðk?; 0Þ / k�6þnþ
? is a steady-state

solution to Eq. (7) at kz ¼ 0 in the absence of dissipation.
Thus, the slow-wave spectrum at kz ¼ 0 (and hence also
the spectrum of a passive scalar) mimics the spectrum of
the minority Alfvén-wave type, A�ðk?; 0Þ. Although all
other terms in the wave kinetic equations containing S�k at

orders higher than "�2 have been discarded, the �ðqzÞS�k
term in Eq. (7) has been retained because it can dominate
as kz ! 0, since the other nonlinear terms and the linear
(Landau) damping term vanish in this limit. [Because
collisionless damping keeps S�k small at nonzero kz, the
cascade of slow-wave energy to larger jkzj arising from
interactions among slow waves is neglected in Eq. (7).]
The term / "�2�ðpzÞ in Eq. (8) represents ‘‘phase-

mixing.’’ Slow-wave density fluctuations at kz ¼ 0 cause
the Alfvén speed to vary in the directions perpendicular to
B0. As a result, Alfvén-wave phase fronts travel at different
speeds on different field lines, transferring Alfvén-wave
energy to larger k? [15]. (Density fluctuations at kz ¼ 0
associated with passive-scalar entropy waves would have
the same effect.) Phase mixing and AAA interactions both
cause a perpendicular cascade of Alfvén-wave energy. The
relative strength of these two processes varies with 
, with
the relative importance of phase mixing increasing as
jkzj=k? increases.
In Eq. (9), the terms proportional to 9sin2
 represent

interactions between three fast waves (‘‘FFF interac-
tions’’). The FFF terms are the same as the collision
integral for weak acoustic turbulence [4], up to an overall
multiplicative factor proportional to sin2
. As sin
 ! 0,
the acousticlike FFF interactions weaken because the fast
waves become less compressive [16]. Energy is transferred
from small k to large k by FFF interactions [6,16]. The
resonance conditions for FFF interactions require that p
and q be parallel or anti-parallel to k, indicating that FFF
interactions transfer energy along radial lines in k-space
[6,16]. The terms containing Mkpq in Eqs. (8) and (9)

represent interactions between one Alfvén wave and two
fast waves (‘‘AFF interactions’’). When k? � jkzj, AFF
interactions cause A�ðk?; kzÞ to become approximately
equal to Fðk?;�jkzjÞ [16]. The combination of FFF and
AFF interactions results in a ‘‘parallel cascade’’, i.e., a
transfer of Alfvén-wave and fast-wave energy to larger
jkzj [16].
The "�2S�p terms in Eq. (9) represent the ‘‘resonant

scattering’’ of fast waves into either new fast waves or
Alfvén waves of equal frequency but different wave-
number [8]. The "�2�ðk� qÞ term in Eq. (9) acts to
isotropize Fk. The "�2S�P terms in Eq. (8) other than the
‘‘phase-mixing’’ term are also denoted ‘‘resonant-
scattering’’ terms, and represent the conversion of an
Alfvén wave into a new Alfvén wave or fast wave of
equal frequency. If S�k * A�

k and S�k * F�
k , then reso-

nant scattering and phase mixing are the most rapid
nonlinear processes in the � ! 0 limit [8]. On the other
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hand, in collisionless systems, Landau damping can reduce
S�k sufficiently that resonant-scattering is weak. (Phase

mixing involves S�k at kz ¼ 0 where Landau damping

vanishes and thus can be very efficient even in collisionless
systems.)

The ‘‘resonant-scattering’’ term in Eq. (8) / "�2�ðkz þ
qzÞðSþp þ S�p Þ represents the interaction of a slow wave

with an Alfvén wave traveling in one direction along the
magnetic field to produce an Alfvén wave traveling in the
opposite direction. This generation of ‘‘back-scattered’’
Alfvén waves does not produce waves at kz ¼ 0 and thus
does not contribute to AAA interactions or the associated
perpendicular cascade of Alfvén-wave energy. Although
the (hypothetical) conversion of A� energy into Aþ energy
would violate cross-helicity conservation in incompress-
ible MHD, the generation of back-scattered Alfvén waves
in compressible MHD does conserve cross helicity when
one takes into account the associated change in the average
flow velocity hvzi.

The �ðk� qÞ term in Eq. (9) that does not contain S�p
represents the generation of slow waves by fast waves. If
the wave fields are viewed as the sum of wave quanta, each
of energy @j!kj and momentum @k, then this �ðk� qÞ
term represents the process f ! fþ s, i.e., a fast-wave
decaying into a slow wave and a new fast wave. This �ðk�
qÞ term conserves the total number of fast-wave quanta
Nf ¼

R
d3k ½Fk=ð@j!�

f;kjÞ
, but decreases the fast-wave en-
ergy Ef ¼

R
d3kFk, and thus causes an inverse cascade of

fast-wave quanta to smaller frequency, i.e., a decrease in
the average fast-wave frequency �!f � Ef=@Nf. The en-

ergy drained from fast waves is transferred to slow waves
[through the �ðp� qÞ term in Eq. (7)], which are then
rapidly damped.

The term ð�=4vAÞ
R
d3pd3q�ðk� p� qÞ�ðqz þ

kzÞ4k2zAþ
k ð@=@qzÞðqzA�

q Þ in Eq. (8) is denoted Iþk , and the

corresponding term in the equation for @A�
k =@t is denoted

I�k . These terms represent the generation of slow waves

by the interaction of oppositely directed Alfvén waves,
i.e. a� ! a	 þ s. Upon defining E�

k ¼ R
dkxdkyA

�
k

and Qk ¼ �k2zE
þ
k E

�
k =vA, one can show that Hk �R

dkxdkyðIþk þ I�k Þ ¼ �Qk þ ð@=@kzÞðkzQkÞ, where the

ð@=@kzÞðkzQkÞ term represents a flux of Alfvén-wave en-
ergy to smaller jkzj (inverse cascade). The energy drained
from Alfvén waves via the�Qk term inHk is transferred to
slow waves through the �ðpz � qzÞ term in Eq. (7), which
then undergo rapid ion Landau damping [17]. This mecha-
nism for transferring Alfvén-wave energy to the ions is
weak for ‘‘quasi-2D’’ fluctuations with jkzj � k? because
of the factor of k2z in I�k .

Equation (8) can be modified to allow for the possibility
of strong-Alfvén-wave turbulence at small jkzj by replac-
ing the AAA term [/�ðqzÞ] in Eq. (8) with the advection
and diffusion terms on the right-hand side of Eq. (15) of
[18] multiplied by a factor of 2 to convert to the normal-
ization of A�

k used in this Letter. Similar generalizations

are possible for the ‘‘phase-mixing’’ and ‘‘passive-scalar
mixing’’ terms.
The interplay between the various nonlinear processes

described in this Letter depends upon the value of� as well
as the amplitudes and anisotropies of the different wave
types at the forcing scale or ‘‘outer scale.’’ For example,
greater excitation of Alfvén waves with jkzj * k? and fast-
waves strengthens the parallel cascade. (Alfvén waves at
k? � jkzj cause only a weak secondary excitation of the
fast waves and Alfvén waves with jkzj> k? that partici-
pate in the parallel cascade.) On the other hand, the per-
pendicular cascade is strengthened by increasing the
excitation at kz ¼ 0 of S�k , entropy waves, and both Aþ

k

and A�
k . A stronger perpendicular cascade then weakens

the parallel cascade by draining energy out of the ‘‘quasi-
parallel’’ region of k space in which jkzj> k?, reducing
the amount of wave energy that reaches very large jkzj.
Numerical solutions to Eqs. (7) through (9) will be useful
for describing turbulence in settings such as the solar
corona, solar flares, and Earth’s magnetosphere.
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