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A recent Letter [M.H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that

irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I.

Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)] may fail in

some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a

generalized Langevin equation the Khinchin theorem holds.
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Introduction.—The ergodic hypothesis (EH) states that
the time and ensemble averages of phase variables exist
and are equal for a stationary system. This hypothesis
enables us to calculate thermodynamic quantities from
the equations of motion of the particles and is crucial for
the proof of basic theorems in statistical mechanics [1–5].
One of those theorems is the Khinchin theorem (KT) [2],
which is of great importance since it relates the ergodicity
of a variable p to the irreversibility of its autocorrela-
tion function. In a recent work [1] based on the well
established method of recurrence relations [6], it was
asserted that, contrary to the KT, irreversibility is not a
sufficient condition for ergodicity; in other words, the KT
may not be valid for all systems. This demonstration poses
a new challenge, i.e., that of determining in which systems
the KT is valid.

Most of the experimental situations in which the EH
does not hold arise in complex nonlinear or far from
equilibrium structures where detailed balance is not ful-
filled. A few examples are found in supercooled liquids
[7,8], glasses [7,9,10] and blinking nanocrystals [11]. The
majority of those systems, however, apparently do not have
an easy analytical solution, with an exception having re-
cently been reported in [12]. On the other hand, even
anomalous diffusion treated with the generalized
Langevin equation (GLE) can present closed solutions
for the main expectation values, and can be used as a
simple laboratory for the discussion of those properties.
As we shall see, in this case, we can give a full description
for the validity of the KT, even when the EH breaks down.
Although anomalous diffusive processes are present also in
the context of deterministic Hamiltonian maps [13], we
shall focus our attention on the GLE formalism.

In this Letter we work with stochastic processes and
show that the KT is valid for all ranges of anomalous
diffusion described by a GLE, even if this condition fails
for Hermitian systems [1].

Khinchin’s theorem.—Let p be a dynamical stochastic
variable (e.g., momentum operator) of a classical particle.

The relaxation function can be written as

RðtÞ ¼ CpðtÞ
Cpð0Þ ; (1)

where the autocorrelation function of p is given byCpðtÞ ¼
hpðtÞpð0Þi � hpðtÞihpð0Þi, and h. . .i stands for an ensemble
average. Explicitly, the KT states that if

Rðt ! 1Þ ¼ 0; (2)

then p is ergodic [2]. In other words, the irreversibility
condition is a necessary and sufficient condition for the
validity of the EH. In Ref. [1], it was claimed that for a
system to be ergodic, it is necessary that 0<W <1,
where

W ¼
Z 1

0
Rðt0Þdt0: (3)

If this condition is true and if p refers to a Hermitian
system, then irreversibility is not a sufficient condition
for ergodicity, since the validity of Eq. (2) does not imply
that W <1.
Diffusion phenomena.—Diffusive dynamics is usually

analyzed using the mean square displacement of the par-
ticles, which behaves in general as

h½xðtÞ � hxðtÞi�2i / t�;

where the exponent � classifies the different types of
diffusion: subdiffusion for 0<�< 1, normal diffusion
for � ¼ 1, and superdiffusion for 1<� � 2; for � ¼ 2
the process is called ballistic [5,14–17]. According to
Kubo’s linear response theory [18], the diffusion constant
is given by

D ¼ lim
t!1

1

2t
h½xðtÞ � hxðtÞi�2i ¼ Cpð0Þ

m2

Z 1

0
Rðt0Þdt0; (4)

where m is the mass of the particle. Thus, for normal
diffusion 0<D<1, for subdiffusion D ¼ 0, and for
superdiffusion D ¼ 1. According to the result of [1],
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ergodicity is only ensured for normal diffusion. Since at the
time the KT was formulated most of the processes studied
displayed normal diffusion with exponential relaxation, it
is quite natural to inquire if the KT will be affected, for
example, in the slow relaxation dynamics that occurs in
anomalous diffusion. In the anomalous regime, power
laws, stretched exponentials, and Bessel functions are
only a few examples of the vast functional behavior that
is possible for relaxation [15,19].

A general description of the diffusion dynamics can be
given by means of the GLE, which was developed by Mori
[20] using a Hermitian formulation, allowing to describe
all diffusive regimes including those beyond the Brownian
limit. The GLE for a single particle in the absence of a net
external force can be written as

dpðtÞ
dt

¼ �
Z t

0
�ðt� t0Þpðt0Þdt0 þ �ðtÞ; (5)

where �ðtÞ is the memory function, and �ðtÞ is a random
force of zero mean. Besides this, the noise is uncorrelated
with the initial value pð0Þ, h�ðtÞpð0Þi ¼ 0, and obeys the
fluctuation-dissipation theorem (FDT) [18]:

h�ðtÞ�ðt0Þi ¼ hp2ieq�ðt� t0Þ;
where h. . .ieq is an average over an ensemble in thermal

equilibrium. The solution of the GLE is

pðtÞ ¼ pð0ÞRðtÞ þ
Z t

0
Rðt� t0Þ�ðt0Þdt0; (6)

where RðtÞ can be obtained by multiplying Eq. (5) by pð0Þ
and taking the ensemble average,

dRðtÞ
dt

¼ �
Z t

0
Rðt0Þ�ðt� t0Þdt0; (7)

whose Laplace transform yields ~RðzÞ ¼ 1=½zþ ~�ðzÞ�. In
this sense, �ðtÞ � �dRðtÞ=dt acts as a response function
[18].

Ensemble average and equilibrium condition.—If a sys-
tem is ergodic and there are no external forces, thermal
equilibrium should be observed in a time t � �c, where �c
is a relaxation time. Then, the distribution function of p
approaches the equilibrium distribution in the limit t ! 1,
and the mean energy converges to the equilibrium value,
hp2ðt ! 1Þi ¼ hp2ieq.

For any initial distribution of values, pð0Þ, it is possible
to obtain the temporal evolution of the moments hpnðtÞi,
with n ¼ 1; 2; . . . . The first moment is obtained directly by
taking the ensemble average of Eq. (6):

hpðtÞi ¼ hpð0ÞiRðtÞ: (8)

Taking the square of Eq. (6) and performing an ensemble
average, we get

hp2ðtÞi ¼ hp2ieq þ R2ðtÞ½hp2ð0Þi � hp2ieq�: (9)

Consequently, we see that the knowledge of RðtÞ allows

one to describe completely these averages. Equations (8)
and (9) are sufficient to show the condition of equilibrium
for diffusion: if condition (2) holds, then the time evolution
will produce the ensemble average with hpðt ! 1Þi ¼ 0
and hp2ðt ! 1Þi ¼ hp2ieq. This result also suggests that

the EH holds, and thus the KT holds. Now we may ask in
what situation Eq. (2) is not valid. First, one should note
that the long time behavior is associated with the small
values of z in the Laplace transform. Indeed, from the final-
value theorem [21] we have

lim
t!1RðtÞ ¼ lim

z!0
z ~RðzÞ: (10)

Therefore, it is only necessary to know ~RðzÞ. Morgado
et al. [14] obtained a general relationship between the

Laplace transform of the memory function ~�ðzÞ and the
diffusion exponent �:

lim
z!0

~�ðzÞ � cz��1; (11)

where c is a positive nondimensional constant. Now, using
Eq. (11), in the limit Eq. (10) we have

lim
t!1RðtÞ ¼ lim

z!0
ð1þ cz��2Þ�1; (12)

which is null for all diffusive processes in the range
0<�< 2. In fact, this occurs in equilibrium or near-
equilibrium states in which the validity of the linear re-
sponse theory holds. On the other hand, this condition
fails for ballistic motion, � ¼ 2, in which Rðt ! 1Þ ¼
1=ð1þ cÞ and the autocorrelation function CpðtÞ will be
non-null for long times. In other words, if the ballistic
system is not initially equilibrated, then it will never reach
equilibrium and the final result of any measurement will
depend on the initial conditions. In this situation, the EH
will not be valid; however, once again the KT holds since
the violation of the EH was due to the violation of the
irreversibility condition, Eq. (2), as predicted by Khinchin.
The main consequence of the violation of this condition is
the presence of a residual current, Eq. (8). However, the
effective current can be very small compared to hpð0Þi and
its value, as any other measurable property for ballistic
diffusion, will depend on the value of c. In other words, the
system decays to a metastable state and remains in it
indefinitely, even in the absence of an external field.
Time average and the EH.—The time averages of corre-

lation functions are crucial for elucidating the properties of
dynamical processes and play an extremely important role
in the ergodic theory and, consequently, in physics. For
diffusive systems governed by the GLE, we will show that
the condition Rðt ! 1Þ ¼ 0 is sufficient for the time av-
erage to be equivalent to the ensemble average, i.e., for the
system to be ergodic. For macroscopic systems with a large
number of degrees of freedom, the effect of past values of
the forces usually vanishes for a sufficiently large t, and the
aforementioned condition is quite reasonable.
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Let us consider the time average integral

Ita ¼ lim
T!1

1

T

Z T

0

Z t

0
�ðt; t0Þdt0dt: (13)

For stationary systems, �ðt; t0Þ ¼ �ðt� t0Þ, we arrive at
[1,4]

Ita ¼ lim
t!1

�Z t

0
�ðt0Þdt0 þ RðtÞ � 1

t

Z t

0
Rðt0Þdt0

�
: (14)

Given that RðtÞ is a real-valued function that converges
asymptotically to a finite value, since we are working with
the velocity autocorrelation, we can use a generalization of
the final-value theorem for Laplace transforms [21],

lim
z!0

z ~RðzÞ ¼ lim
T!1

1

T

Z T

0
RðtÞdt:

With this, we obtain from Eq. (14)

~�ð0Þ þ Rðt ! 1Þ � lim
z!0

z ~RðzÞ ¼ �s; (15)

where �s is the time independent value, often called static
susceptibility. On the other hand, taking the Laplace trans-
form of Eq. (7), we obtain ~�ðzÞ þ z ~RðzÞ ¼ �s. Taking the
limit z ! 0, the previous relation becomes

~�ð0Þ þ lim
z!0

z ~RðzÞ ¼ �s: (16)

Comparing Eq. (16) with Eq. (15), one should conclude
that the EH can only be valid if Rðt ! 1Þ ¼ 0, i.e., if the
irreversibility condition (2) holds. From Eq. (10) we end up
with

~�ð0Þ ¼ �s: (17)

Again this is a consequence of the irreversibility condition.

Therefore, irreversibility is a necessary and sufficient con-
dition for the EH to hold in diffusive processes described
by a GLE.
Simulation.—In order to illustrate the analytical results,

we have numerically integrated the GLE, Eq. (5), to obtain
approximations to the probability distribution of particle
velocities using histograms. We construct the memory
using

�ðtÞ ¼
Z

�ð!Þ cosð!tÞd!; (18)

where

�ð!Þ ¼
�
a!�; for ! � !s

gð!Þ; otherwise:
(19)

Here, the function gð!Þ is arbitrary as long as it is suffi-
ciently well behaved and that its integral in the memory
function converges. If one is interested only in the long
time behavior t � 1=!s, it can be taken to be 0. With this
noise density of states, it is possible to simulate many
diffusive regimes [15]. Noise of this form can be obtained
either by formal methods or empirical data. Using this
expression in Eq. (18), taking the Laplace transform in
the limit z ! 0, we have

~�ðzÞ /
8><
>:
z�; for �< 1;
�az lnðzÞ; for � ¼ 1;
z; for �> 1:

(20)

Consequently, for this type of noise, there is a maximum
value of �, i.e., � � 2 for any value of �. It should be
noted that the case� ¼ 1 does not lead to a memory whose
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FIG. 1 (color online). Numerical re-
sults for the probability distribution
function for subdiffusion (top left, � ¼
0:5), normal diffusion (top right, � ¼ 1)
and superdiffusion (bottom, � ¼ 1:5).
The time averages (circles) are obtained
by following one particle trajectory and
calculating the histogram for times from
t ¼ 100 to t ¼ 5000. For the ensemble
averages (squares), we calculate the his-
togram using 5� 104 particles, at time
t ¼ 1000. The continuous line is the
Maxwell-Boltzmann distribution. Insets:
Curves a correspond to the functions t�

and curves b to the simulated mean
square displacements.
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Laplace transform is in the form of Eq. (11). For �1<
�< 1, we obtain � ¼ 1þ �. For �> 1, one has � ¼ 2,
which shows that ballistic diffusion is a limiting case for
the GLE with this type of memory.

In Fig. 1 we show the probability distribution functions
obtained for subdiffusion (� ¼ �0:5), normal diffusion
(� ¼ 0), and superdiffusion (� ¼ 0:5) for the values a ¼
0:25 and gðwÞ ¼ 0. We have used !s ¼ 0:5 for all cases
except for subdiffusion, which demands a broad noise
!s ¼ 2 to reach the stationary state. In all cases, we expect
that Rðt ! 1Þ ¼ 0, and that the EH will be valid even for
the subdiffusive (superdiffusive) case, despite the fact that
W ¼ 0 (W ¼ 1). These relations can be seen by consid-
ering the limit W ¼ limz!0

~RðzÞ. If the EH is valid, the
velocity probability distribution will be the same for an
average over an ensemble of particles and for a time
average over the trajectory of a single particle for long
times after the system has reached an equilibrium state.
Note that despite the presence of large fluctuations in the
time average case due to numerical errors, there is a good
agreement between the resulting ensemble and time dis-
tributions. The three probability distributions converge
toward the Maxwell-Boltzmann distribution, which is in
accordance with previous analytical results [17].

Concluding remarks.—In this work, we have shown that
the KT (proved by Khinchin for normal diffusion) holds for
all kinds of diffusive processes, which are ergodic in the
range of exponents 0<�< 2. This result may have deep
consequences in many areas [7–12]. Moreover, it could be
verified in and applied to experimental systems, such as the
subdiffusive dynamics of the distance between an electron
transfer donor and acceptor pair within a single protein
molecule [22], which has recently been modeled by a GLE
[23]. Such a model successfully explains the equilibrium
fluctuations and its broad range of time scales, being in
excellent agreement with experiments. The KT gives the
EH a practical character, since it is expressed in terms of
response functions: our results apply for real-valued re-
laxation functions RðtÞ; on the other hand, if the relaxation
function assumes complex values, e.g., conductivity, the
final-value theorem may not be applied. For those systems,
the KT fails, as proposed in Ref. [1].

In principle, it is generally possible to derive a GLE for
Markovian systems by eliminating variables, whose effects
are incorporated in the memory kernel and in the colored
noise [24]. Altogether, some results obtained for the GLE
formalism should be valid for diffusion described by frac-
tional Fokker-Planck equations, since both formalisms
yield similar results [23]. For nonlinear Hamiltonian
maps [13] there is no general framework to address the
problem and, in particular, the absence of a coupling to a
thermal bath (explicit in the GLE) and consequently the
lack of a detailed balance relation or FDT may require a

specific analysis of each case. However, since it is possible
to give a kinetic description of the Hamiltonian dynamics
by means of a fractional Fokker-Planck-Kolmogorov equa-
tion [25], it is expected that the treatment of anomalous
diffusion in such systems should also be possible by the
GLE formalism. Further research in this direction is
needed and will open new perspectives.
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