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We demonstrate that perfect state transfer can be achieved using an engineered spin chain and clean
local end-chain operations, without requiring the initialization of the state of the medium nor fine-tuning
of control pulses. This considerably relaxes the prerequisites for obtaining reliable transfer of quantum
information across interacting-spin systems. Moreover, it allows us to shed light on the interplay among
purity, entanglement, and operations on a class of many-body systems potentially useful for quantum

information processing tasks.
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The ability to prepare a fiducial state of a quantum
system that has to accomplish a task of quantum commu-
nication or computation is one of seven desiderata, more
commonly known as DiVincenzo’s criteria [1], that any
reliable device for quantum information processing (QIP)
should meet. However, even the innocent request for a pure
reference state for the initialization of a QIP device is not
easily granted, in practice, mainly due to the difficulty of
preparing pure states of multipartite systems. A striking
example is given by nuclear-magnetic-resonance QIP [2],
where the signal observed in an experiment comes from a
chaotic ensemble of emitters, whose overall state is
strongly mixed, and is “reinterpreted” quantum mechani-
cally by relying on the concept of pseudopurity [3].
Another very important instance is provided by schemes
for quantum state transfer (QST) in spin chains [4]. These
have emerged as remarkable candidates for the realization
of faithful short-distance transmission of quantum infor-
mation [5]. Although the preparation of the spin medium in
a fiducial pure state is an important step in the achievement
of optimal transport fidelity, studies conducted on the
effects of randomization of the chain’s state have revealed
that the process’ efficiency gets spoiled, in a way that
quantitatively depends on the mechanism assumed for
such randomization [6,7].

Here we show that the conditions about the initial state
of a spin chain which enable perfect state transfer can be
considerably reduced, without requiring fine-tuning of
control pulses over the chain [8]. Specifically, we demon-
strate a scheme for perfect QST that is able to bypass the
initialization of the spin medium in a known pure state. The
scheme requires only end-chain single-qubit operations
and a single application of a global unitary evolution and
is thus fully within a scenario where the control over the
core part of the spin medium is relaxed in favor of con-
trollability of the first and last element of the chain. We
show flexibility of our designed protocol, which can be
adapted to various interaction models. In fact, we give the
general conditions necessary in order to achieve perfect
state transfer without state initialization via our scheme.
With minimal changes, one can use any Hamiltonian sat-
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isfying particular conditions on the time-evolution of two-
site operators, as clearly identified in this Letter.

To provide the details of our protocol, we address the
cases of two models for QST in spin chains which have
been widely used so far [6,9]. We start with a nearest-
neighbor Ising coupling involving N spin-% particles that
also experience a transverse magnetic field. Its Hamilton-
ian reads H | = YN¥'J, 2,21, + 3N, B;X,. Here, J; is
the interaction strength between spin i and i + 1 and B; is
the strength of the coupling of spin i to a local magnetic
field. In our notation, X, ¥, and Z denote the x, y, and z
Pauli matrix, respectively. We choose J; = Jy/4i(N — i)
and B; = J4/(2i — 1)(2N — 2i + 1) with J being a charac-
teristic energy scale that depends on the specific physical
implementation of the model (we choose units such that
# = 1 throughout the Letter). By applying the single-spin
operation (1 + iX)/+/2 on the first element of the chain
and using the eigenstates |+) = (|0) = |1))/v/2 of the X
operator as computational basis, end-to-end perfect QST is

achieved via JH |, when Jt* = 77/4 (¢* is the evolution time)
and for the initial fiducial state |+ ...+), y of the
spin medium [6]. This result has been obtained by analyz-
ing the system from an information-flux (IF) viewpoint
[10]. However, the state-transfer fidelity is sensitive to de-
viations of the initial state from the one being ideally
required.

For the understanding of the following discussion, it is
enough to mention that the IF is in general rather useful
when information regarding multisite correlation functions
is needed [11]. The analysis is performed in Heisenberg
picture and requires (b(t), i.e., the time-evolved form of a
given chain operator O. Here, for the purposes of our study,
we concentrate on the evolution of two-site operators
ﬁiXN*iJrl’ Zl'?N*l"Fl’ and ZiZAN,iJr]. At time ¥ = 7T/4],
by solving the relevant Heisenberg equations, we have that

ﬁi(t*)XN—Hl(t*) = )A(i ﬁN—i+1v
Zi(tYYy—ii1 () =Y, Zy_ 1, (1)
Zi() Ly (1) = ZiZN—i+1-
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Clearly, each of these two-site operators evolves in its
swapped version, without any dependence on other chain’s
operators. This paves the way to the core of our protocol,
which we now describe qualitatively. Qubit 1 is initialized
in the input state p™ (either a pure or mixed state) we want
to transfer and qubit N is projected onto an eigenstate of Z.

Then the interaction encompassed by ;| is switched on
for a time t* = 77/4J, after which we end up with an
entangled state of the chain. The amount of entanglement
shared by the elements of the chain depends critically on
their initial state, as it is commented later on. Regardless of
the amount of entanglement being set, a 7 measurement
over the first spin projects the Nth one onto a state that is
locally equivalent to p™. More specifically, if the product
of the measurement outcomes at 1 (after the evolution) and
N (before the evolution) is +1 (—1), the last spin will be in
p™ (Xp"X). In any case, apart from a simple single-spin
transformation, perfect state transfer is achieved. For com-
pleteness of presentation, here we quantitatively assess the
performance of our proposal.

We start by considering spins 2, ..., N — 1 all prepared
in (unknown) eigenstates of the Z operator. For simplicity,
we assume a pure state |¢y) = «|0) + B|1) to be trans-
mitted and the last spin in |0), although the generalization
is straightforward. For definiteness, a representative of the
initial state of the medium is written as |a, ... ay—1 )2 n—1
with |a;); the state of spin i (a; = 0, 1). The final state

of the chain, e 11" [y lay ... ay_ 1Yo n—110)y, is found
to be W= (/2O lay_;...a) y-il)y +

V i. Thus, upon measurement of the first spin over the Z
eigenbasis, the state of the last spin is clearly locally
equivalent to |¢) (and separable with respect to the sub-
system {2, ..., N — 1}). The form of | W) reveals the core
of our mechanism. In fact, before the measurement stage, a
fraction of genuine N-party entanglement of Greenberger-
Horne-Zeilinger (GHZ) form [12] is shared by the ele-
ments of the chain. Such fraction is maximum for
(y|X|) = 0 and disappears if |) is taken as an eigen-
state of X, showing that the state to be transmitted acts
as a knob for the entanglement in the chain. This con-
sideration can be extended to any other spin of the
medium. Indeed, suppose that one of the central spins
(labeled j) is prepared in an eigenstate Ii)j of X.
The final state of the chain after the evolution driven by
H, is (1/\/-2—)|i>1v7j+1[|0>1|a1v—1 @) Nyl Py
1)" denotes the set of all spins from 2 to N — 1, spin N —
j + 1 excluded. This shows that, in general, the GHZ
entanglement shared by the elements of the chain before
the measurement stage will not include the spins that are
mirror-symmetrical with respect to any element initially
prepared in an eigenstate of X.

We can now extend our analysis to the case of an initial
mixed state of the spin-medium. As before, for simplicity,

the state of the last spin is |0). By following the same
steps as above, the final state of the system would be given

by pr=3[10){0l ® p ® piy + [1)(1] ® Sp® THpll —
(il0y, (1| ® S;p ® T pitt + H.c.)] with p the density ma-
trix of spins from 2 to N — 1 obtained by applying a

mirror-inversion operation on their initial state and p™
the density matrix of the state to transfer. We have defined
Sip=pIIS' X, Sop =TS XipI1S' Xie T iply =
P Xy, Topit = XypXy. Again, the crucial point here
is that, regardless of the amount of entanglement estab-
lished between the spin medium and the extremal elements
of the chain (i.e., spins 1 and N), upon Z measure-
ment of 1, the last spin is disconnected from the rest of
the system, whose initial state is inessential to the perform-
ance of the protocol and could well be, for instance, a
thermal state of the chain in equilibrium at finite tempera-
ture. In fact, the key requirements for our scheme are the
arrangement of the proper time evolution (to be accom-
plished within the coherence times of the system) and the
performance of clean projective measurements on spin 1
and, preventively, on N.

The last requirement of our scheme is particularly im-
portant and, in order to estimate its relevance, we evaluate
the performance of the protocol against the purity of the
initial state of spin N. For the sake of simplicity, we focus
on the case in which a pure state is transmitted, the case of
mixed states being easily deduced. Our instrument is the
input-output transfer fidelity Finser = (¢|p%"1¢) (With
p" the state of the last qubit after the protocol), which
is unity when the two states are the same and zero when
they are mutually orthogonal. We have that Fi,er =
poo + (1 = poo)Tr(l X r|X), where poo €[0,1] is the
population of |0) in the density matrix describing the initial
state of spin N (decomposed over the Z basis). The inde-
pendence of the state fidelity from the coherences of the
initial state of N implies that it is effectively the same to
operate with a pure state [P)y = /PoolOy +
e JT— ppll)y or the mixed one py = pyl0) X
(O + y[0X1] + y*[1)}0] + (1 = pgo)[1X1], with y being
arbitrary. Any error in the QST process has to be ascribed
to the fact that, for a nonunit value of pg, the perfectly
transmitted state |i) has an admixture with the “wrong”
state X| ). This explains the dependence of F e, 0N the
state to be transmitted (more precisely, on (¢ |X|)).

As anticipated, our results are not bound to the specific
instance of interaction model being considered but, more
generally, on the way two-site operators evolve in time.
Under different couplings, similar behaviors for objects
like (ADi(t*)(AQN,,-H(t*) can be observed, therefore leading
to conclusions similar to those put forward in our discus-
sion so far. In fact, with rather minor adjustments to the
procedure described above, one can apply the scheme to N

spin-1/2 particles coupled via the XX model H, =
SN VKX Xy + Vi¥iy) with K, = Ji(N —i). H,
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has been extensively analyzed [9]: 1 — N perfect QST is
achieved when the initial state of all the spins but the first
one is |0). However, let us reason in terms of IF again,
proceed as done above for the Ising model and look at the
dynamics of two-site operators symmetrical with respect to
the center of the chain. At time " = 7/4J, we have that,
for any N, 1,(r" )Zy—is1 () = Z;Ay_i4,. On the other
hand, for even N we find

Xi(t*)XN—i+1(t*) = XiXN—H—l’

ey #\ * O (2)
Xit)Yn-i1(t) = YiX i1,
while for an odd number of spins in the chain we have
Xi(t*)XN—Hl(t*) =Y ¥y i1,
(3)

Xi(@)Yy—in(t7) = XiYN—l“F]‘

The procedure to follow has to be adjusted depending on
the chain’s length. In particular, the last spin has to be
projected onto |+ y) = (|0) * ¢N™/2|1))/4/2. In what fol-
lows, we say that outcome +1 (—1) is found if a projection
onto |+ ) (|—y)) is performed. This change of basis with
respect to the protocol designed for the Ising model is due
to the different form of the transverse nature of FH ,. After
the evolution e 71> we measure the first spin over the X
eigenbasis. The resulting output state depends on the prod-
uct of the measurement outcomes at 1 (after the evolution)
and N (before the evolution). If such product is +1 (—1),
the transmitted state will be (V)1 p™(TV) [(TV)p™(TV) 1],
where 7' = |0)0] + /™2 |1X1]| (therefore, T = Z). Also
in this case, apart from a single-spin transformation, per-
fect state transfer is achieved. A sketch of the general
scheme for perfect state transfer is presented in Fig. 1.
For the XX model, we can write the final state of the system
before the M,-measurement stage (we consider the last

spin  in |+N2)’ as pr={lt)(+1®p®ph+|-) X
(—l®Ssp®Typly — Ll(—})NH)l(—L@ 33[) ®AT3P vV
HeJ}/2, with p=AtpA, pin = (TV)tpin(TY), A=
15 1Y, Sip = pITS' Zi Sap = TS ZA TS 23,
T3p% = pZy, T4pit = ZypiZy.

In general, the protocol can be adapted to any
Hamiltonian for which we can find a triplet of single-spin
operators B C D such that, for symmetric spin pairs, we
have BIo(t*)Cy 11Oy i1, (") = 0:D% ... Here, B

(Dy_;+1) provides the eigenbasis for the measurement
over spin i (N — i+ 1) of the chain after (before) the

(bi(o) =
0, 1, depending on the coupling

evolution, € N—i+1 1s a decoding operation, 0,» =
X Y Z and jo, ko
model. For instance, Egs. (1) are gained by taking B

Zl’ CN i+1 =1, DN i+1 _ZN i+1 with .]X - kX 0,
Jv.z = kyz = 1. We point out that when these conditions
are not fulfilled, as in Ref. [13] where an antiferromagnetic
Heisenberg chain is used, our protocol can still be rather
successful. In these cases, through IF we can calculate an
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FIG. 1 (color online). Sketch of the scheme for perfect QST.
M, and M, are measurements performed over a fixed basis, % is

a conditional operation, and H is the Hamiltonian.

estimate of the average transfer fidelity [10]. For instance,
for a homogeneous XX model of N = 100 spins with end-
point coupling strengths J; y—; such that J, = Jy_| =
0.7J, the average transfer fidelity via our protocol is esti-
mated to be = 0.87.

As noticed for the case of |, the nature and amount of
the entanglement generated during the performance of the
protocol depends on the form of the initial state of the
medium’s spins. Multipartite entanglement shared by all
(or some of) the elements of the chain, as well as only
bipartite entanglement involving first and last qubits (as in
the case when spins from 2 to N — 1 are in eigenstates of
X ) can be generated. Nevertheless, unit fidelity of transfer
is achieved when the right time evolution and perfect
hard projections are in order. This strongly supports the
idea that QST protocols do not crucially rely on the specific
nature and quality of the entanglement generated through-
out the many-body dynamics, in stark contrast with other
schemes for QIP [14].

On the other hand, the counterintuitive fact that
Fianster = 1 regardless the initial state of medium could
remind one, at first sight, of the idea of deterministic
quantum computation with one quantum bit (DQC1) pro-
posed in Ref. [15]. In this model, a single pure two-level
system and arbitrarily many ancillae prepared in a maxi-
mally mixed state are used in order to solve problems for
which no efficient classical algorithm is known. The ap-
parent similarity with our case is resolved by observing
that in DQCI1 the initial state is restricted to that particu-
lar instance (a pure single-qubit state and a maximally
mixed state of all the other qubits), which can be seen as
the “fiducial” state invoked in DiVincenzo’s criterion.
Differently, our scheme completely relaxes the knowledge
required about the state of the spin-medium, which might
be completely unknown to the agents that perform the QST
process. The achievement of quantum computation with
initial mixed states has also been analyzed in Ref. [16],
where it has been shown that a single qubit supported by a
collection of qubits in an arbitrary mixed state is sufficient
to efficiently implement Shor’s factorization algorithm. In
this case, however, the performance of the protocol de-
pends on the input state. Indeed, the average efficiency
over all the possible random states (mixed or pure) is
evaluated, but for some particular input states (for instance,
[0...0), ) it can drop below classical limit. Differently,

our scheme is independent of the initialization of the spin-
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medium and its efficiency cannot be spoiled by any input
state.

It is worth clarifying an important aspect which is cer-
tainly apparent to the careful reader. The procedures de-
scribed so far might remind one of the general scheme for
one-way computation put forward in Ref. [17]. In both
cases, the optimal result of a protocol depends on the
performance of perfect projective measurements onto spe-
cific elements of a register and the feed-forward of a
certain amount of classical information (in our case, the
outcome of the measurements over spin 1 and/or the initial
projection of spin N). Moreover, as in the one-way model,
in our proposal the ‘“pattern” of quantum correlations
depends on the initial state of the elements of the system.
However, such an analogy cannot be pushed too forward
as, remarkably, the use of quantum entanglement in the two
protocols is rather different. While the one-way model
relies on a prebuilt multipartite entangled resource (the
graph state) which is progressively destroyed by a proper
program of measurements, in our scheme the multipartite
entanglement (if any) is built while the protocol is running.
We just need a single measurement for the processing of
the information encoded at the input state. In addition,
differently from a graph state, the preparation of some of
the spins in the medium in states preventing their partici-
pation to a multipartite entangled state does not spoil the
efficiency of the protocol, as we have demonstrated. This is
not the case for a graph-state built out of pairwise Ising
interactions: the wrong initialization of a part of the regis-
ter excludes it from the overall entangled state, and ac-
tually ““blocks” the transfer of information through that
region of the register.

Finally, we would like to stress the difference between
our approach and those achieving perfect QST via mirror-
inverting coupling model [18]. In our general protocol,
mirror inversion is “‘induced” in models which otherwise
would not allow it, by adjusting the pattern of quantum
interferences within the spin medium via the encoding or
decoding local stages. By means of these, one can avoid the
preengineered fulfilment of precise conditions on the spec-
trum of each interacting spin [18,19] which, combined
with reflection symmetry, are required for mirror inversion.
Our models satisfy just the second of these conditions,
perfect QST without initialization being achieved through
the encoding and decoding steps we have described.

We have shown the existence of a simple control-limited
scheme for the achievement of perfect QST in a system of
interacting spins without the necessity of demanding state
initialization. Our flexible protocol requires just one-shot
unitary evolution and end-chain local operations. Its effi-
ciency arises from the establishment of correlations be-
tween the first and last spin of the transmission chain. With
the exception of limiting cases where the transfer is auto-
matically achieved [as for the transfer of eigenstates of X,

(21) when model .’1’:[ 1 (.’]:[ ») is used], these are set regard-
less of the state of the spin medium, their amount being a

case-dependent issue. The end-chain measurements, which
are key to our scheme, “‘adjust’ such correlations in a way
so as to achieve perfect QST. We hope that our study,
which paves the way to a thorough investigation about
the role played by multipartite entanglement in perfect
QST, would help in the experimental realization of short-
distance quantum communication in, for instance, engi-
neered superconducting chains or patterned distributed
nanosystems.
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