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For quantum systems with high purity, we find all observables that, when continuously monitored,
maximize the instantaneous reduction in the average linear entropy. This allows us to obtain all locally
optimal feedback protocols with strong feedback, and explicit expressions for the best such protocols for
systems of size N = 4. We also show that for a qutrit the locally optimal protocol is the optimal protocol
for observables with equispaced eigenvalues, providing the first fully optimal feedback protocol for a

3-state system.
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Observation and control of coherent quantum behavior
has been realized in a variety of mesoscopic devices [1-4].
With further refinements, such devices may well form the
basis of new technologies, for example, in sensing [5] and
communication [6,7]. Feedback, in which a system is
continuously observed and the information used to control
its behavior in the presence of noise, is an important
element in the quantum engineer’s toolbox [6-11]. In
view of this, one would like to know the limits on such
control, given any relevant limitations on the measurement
and/or control forces. However, except in special cases
[12], the dynamics of continuously observed quantum
systems is nonlinear. Further, results on the quantum-to-
classical transition show that this nonlinear dynamics,
described by stochastic master equations (SMEs), is nec-
essarily every bit as complex (and chaotic) as that of non-
linear classical systems [13]. Because of this, fully general
and exact results regarding optimal quantum feedback are
unlikely to exist; certainly no such results have been found
for nonlinear classical systems [14]. Nevertheless, one
would like to obtain results that give insights applicable
across a range of systems.

Quantum feedback control is implemented by modify-
ing a “control” Hamiltonian H, that is some part of the
system Hamiltonian. Here we will examine feedback pro-
tocols in the regime where the controls are able to keep the
system close to a pure state. This is an important regime,
both because it is where many quantum control systems
will need to operate and because it allows one to simplify
the problem by using a power series expansion [15]. In
addition to working in the regime of good control, we make
two further simplifications. The first is that the control is
strong—that is, that (1) the only constraint on H is that
Ti[H?] < p? for some constant u and (2) that H can
induce dynamics much faster than both the dynamics of
the system and the rate at which the measurement extracts
information. This means that H is effectively uncon-
strained. We thus deal strictly with a subset of the regime
of good control, defined by w > k and k > (. Here k is
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the strength of the measurement (defined precisely below),
and S is the noise strength, which we define as the rate of
increase of the linear entropy due to the noise. The latter
inequality is essential for good control. This regime is
applicable, for example, to mesoscopic superconducting
systems [1—4], such as coupled Cooper-pair boxes. Here
the speed of control rotations is typically 1-10 GHz [2],
and that of decoherence is 10° s~! [16]. Measuring these at
arate k =5 X 107 s~! is reasonable [17], and falls in the
above regime.

Our second simplification is to seek control protocols
that give the maximum increase in the control objective in
each time step separately—that is, that are locally optimal
in time. However, we will find that for a qutrit, the locally
optimal protocol (LOP) is the optimal protocol for observ-
ables with equispaced eigenvalues.

We will allow the controller to measure a single observ-
able, X. Since the control allows us to perform all unitary
operations, and since transforming the system is equivalent
to transforming the observable being measured, X, this
allows the controller to measure all observables of the
form X* = UXU?, for any unitary U. Since the control
Hamiltonian is not limited, the only constraint on the
controller is the rate at which the measurement extracts
information (the measurement strength k).

A sensible and widely applicable control objective is to
maximize the probability P that the system will be found in
a desired pure state (referred to as the farget state) at a
given time 7 (called the horizon time). This objective also
allows one to maximize P in the steady state, and is the
objective we will consider here.

In what follows we will denote the state of the quantum
system by the density matrix p and the N eigenvalues of p
as A;. We place these in decreasing order so that A; > A;, ;.
Since the control dynamics is fast, at any time 7 we can
apply H to quickly rotate p so as to maximize P at that
time. This means rotating p so that the eigenstate corre-
sponding to A is the target state, giving P = A,. Thus the
optimality of the control is determined entirely by the

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.101.230403

PRL 101, 230403 (2008)

PHYSICAL REVIEW LETTERS

week ending
5 DECEMBER 2008

eigenvalues A;. (Since the control Hamiltonian cannot
change these eigenvalues, the only further role of H is to
set the observable to be measured at each time, X“(¢).) The
probability that the state is found in the target state at a
given future time is thus the average of A, over all future
trajectories at that time: P(z) = (Ay(¢)). Note also that
because the state is near-pure, we can write Ap = 1 — A,
with A < 1. Thus P = 1 — (A(¢)), with (A(T)) the error
probability.

By definition, the locally optimal feedback protocol is
the one that maximizes the rate of reduction of (A) at each
time step. To find the LOP, we must find the observable,
X", that maximizes the rate of reduction of (A) for any p.
To derive the equation of motion for (A), we start with the
SME for the density matrix under a continuous measure-
ment of X“:

dp=—K[X",[X", p]ldt +2k(X"p + pX* — 2X")p)dW.
(D

Here the assumption of strong feedback allows us to drop
any system Hamiltonian, and dW is Gaussian (Wiener)
noise, satisfying (dW) = 0 and dW? = dt. Note that this
SME does not include noise; we exclude noise in what
follows except when we calculate results for the steady
state. To obtain the equation of motion for (A), to first order
in A, we first note that A = (1 — Tr[ p])/2 (that is, half the
linear entropy), to first order in A [18]. We calculate the
derivative of Tr[p?] directly from the SME, and then
expand the result in powers of A. This gives

dA = =8k A |Xk | dr — \/@(Axgo — Z/\,-X;‘i)dW,
i#0 i#0

2

where X", = (n|X"|m). The equation of motion for (A) is
given by averaging this equation over dW. Thus (Ay =
—8kX ;0 Nil Xl

We now prove the following theorem.

Theorem [.—Define X as Hermitian, U as unitary,
and p as a density operator of dimension N. Without
loss of generality we set X and p to be diagonal, arrange
the eigenvalues of p, A;, in decreasing order, and ar-
range the eigenvalues of X so that the two extreme values
are in the first 2 X 2 block, corresponding to the two largest
eigenvalues of p [19]. The maximum of F(U)=
SN lGIUXUTI0)? = 3,.04:1X % |? is achieved if

U=Up=UsoV, 3)

where U} is any 2 X 2 unitary unbiased with respect to the
basis {(1, 0), (0, 1)}:

i i i
4 el —e'™
U; = ﬁ(e“% o0 ) “

and V is any unitary with dimension N — 2.

Proof.—We first derive an upper bound on F(U). This is

N-1 N—1
FO) = A 3 IR = A 3 I - 1]
i=1 i=0

(xmax - xmin)z

= A, var(X, UT0)) = A, 2

&)
Here var(X, |¢)) denotes the variance of X in the state | ).
The first inequality is immediate, and the last is well known
[20]. Since U,y saturates this bound, it achieves the maxi-
mum. That only unitaries of the above form achieve the
maximum is simplest to show when the eigenvalues of p
are nondegenerate: to saturate the first inequality one must
restrict U to the subspace spanned by {|0), |1)}, and to
achieve the last, U must be unbiased with respect to the
eigenbasis. When the eigenvalues of p are degenerate, a
careful analysis shows that this remains true [21]. (|

The remarkably simple form of U,y tells us that to
obtain the fastest reduction in {(A) at each time ¢, and
thus realize a LOP, we must choose X* at each time to
concentrate the distinguishing power of the measurement
entirely on the largest two eigenvalues of p at that time,
and measure in a basis that is unbiased with respect to the
corresponding eigenvectors. It also tells us that the maxi-
mum achievable rate of reduction is

<A> = _8k<Al>|X31 |2 = _2k</\1>(~xmax - xmin)z’ (6)

where A, is the second largest eigenvalue of p(7), and x,,,,
and x,;, are the maximum and minimum eigenvalues of X.
Note that (A,) also decreases at the rate (A). We have
complete freedom in choosing the unitary submatrix V,
as it has no effect on (A). However, V also has no effect on
A;; V oinduces transition rates only between the (N — 2)
smallest eigenvalues.

We can now obtain a lower bound on the performance of
LOPs for any system. Whatever the choice of V, (A;) will
always be greater than or equal to (A)/(N — 1). We there-
fore have (A) = —[8/(N — 1)Jk(A)|X% 1%, and thus in the
absence of noise, throughout the evolution the error proba-
bility will satisfy

(A1) = Age 2@ /N7, (7)

where 6x = Xpax — Xmin-

In the presence of noise, the important quantity is the
steady-state error probability, (A), and we can rederive
the lower bound on this given in [15]. In the worst case, V
leaves the N — 2 smallest eigenvalues unchanged, so that
under isotropic noise all the small eigenvalues remain
identical once homogenized by the action of the LOP.
The equation of motion for (A), is then (A)=
—8k(A) X4 1?/(N — 1) + B/2 (recall that B is the noise
strength). This gives (A) = [B(N — 1)]/[4k(6x)*], a
lower bound on the performance of all LOPs with isotropic
noise.
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We further have the nice result that, for qubits and
qutrits, the two lower bounds just derived are tight—here
they give the performance of the best LOPs because the
action of V is trivial for N < 4.

For N = 4, to obtain the best LOP, one would need to
choose V to continually minimize the entropy of the small-
est N — 2 eigenvalues in such a way as to allow one to
generate the largest possible value of [(A)| at all future
times. Using time-independent perturbation theory [22],
we can derive from Eq. (1) the equations of motion for
all the small eigenvalues. These are

d\; = Fi(A, XY)dt + a,(A, X*)dW, (8)
where A = (A, ..., Ay_;), and
AAS
— u |2 7 u |2
F, = 8k[/\i|X0i| DN b ]
j=>0,j#i 1 J (9)

o = Bk (XY, — X1,

fori =1,..., N — 1. Note that under locally optimal con-
trol, the equation for (A;) reduces to d{A;)=
—8k(A )Xl 2

The equations for the small eigenvalues are nonlinear.
As a result of this, in general in finding the optimal V, one
cannot easily eliminate the stochastic terms as we have
been able to in the analysis so far, even though we are
interested purely in the average value of A. Nevertheless,
for N = 4 we can obtain the optimal V by combining the
above results with those of [8], which shows that the
maximal increase in the largest eigenvalue of a qubit is
obtained when the observable is unbiased with respect to
the eigenvectors. Since the best thing we can do, given that
we continually maximize d5, is to separate the two small-
est eigenvalues as rapidly as possible, the result in [8] tells
us that V must be unbiased with respect to the eigenvectors
of the two smallest eigenvalues. We now label the eigen-
values of X in decreasing order as x;. Because the SME is
invariant under the transformation X — X + a/ («a real),
we add a constant to X so that x;, = —x;, without loss of
generality. The best locally optimal control is then

achieved by
w (0 x d c
wo(nv)e(ca)

where 2d = x, + x3, 2c = x, — x3, and x; > c. If the
eigenvalues of X" are equally spaced, then d = 0 and all
stochastic terms vanish. In this case (A) = A, and the
equations for the system, excluding noise, are

A=A = —8kx?A,, (11)

Ay = —A3 =8k aA3/ (A — A3), (12)

where A = Z?:l A; = A;. Even though these equations
are nonlinear, it is possible to obtain an analytic expression
for the behavior of A once certain transients have died
away. To do this note that the LOP first equalizes A; and
A,, and then must rapidly and repeatedly swap them. As a

result they remain equal, and their derivatives become the
average of A; and A, above. Next, calculating the deriva-
tive of the ratio R = A,/ A5, we find that for x; > V2¢e, R
stabilizes at the value Ry, = (x7 + ¢2)/(x? — ¢?). Once this
has happened, the equation for A reduces to the simple
exponential decay A = —yA, with the rate

y = [4k/BA]N2 — A2 —2¢%),  x, >2¢ (13)

Forc <x; = \/ic, after a time such that R > 1, the result
is also exponential decay, but with y = 4kx?.

We have now found the best locally optimal proto-
cols for N = 3 and 4, but in each case the LOP is not
necessarily the optimal protocol. We will now examine
the LOP for a qutrit and show that under certain conditions
it is the optimal protocol. Before we do this, we note that
we can use the theorem above to place an upper bound on
the performance of any protocol for all systems in the
regime of good control. Since max((A)) = —2k(A;) X
(Xmax — *min)?>> and (A;) = (A), the steady-state error
probability for any protocol satisfies

<A>ss = :8/[4k(xmax - xmin)z], (14)

where [ is once again the noise strength. This is true for
any noise process, isotropic or otherwise.

We now analyze the case of a qutrit when X has equally
spaced eigenvalues. As usual we denote these as x; > x, >
x3. We also add a constant to X so that x; = —x; and x, =
0. With these definitions, the LOP for a single qutrit
involves choosing U so that

0 g O
Xt = (q 0 O), (15)
0 0 0

where g = (x; — x3)/2 = x,. This generates the evolution
(A1), A1) = (M%7, A9), where A and A9 are the initial
values of A; and A,, and we have defined y = 8kg>. This
measurement is applied until A;(7) = A3, which occurs
after a time 7 = In(A?/A9)/y. At this point the LOP
changes abruptly, and involves rapidly switching the mea-
surement between X" and X = 0ﬂipX”0gip, where O,
swaps the eigenstates of A; and A,. In the limit of fast
switching, this generates the evolution (A(2), A5(¢)) =
(A,(7), A5(7))e~Y=7/2 Denoting now the initial time by
t, the error probability under the LOP at the final time T
(the horizon time) is thus

ALOP(A’ 1, T) = Ale_y(T_t) + A2) T<1t+ T,
ALOP([\) t; T) = Z‘VAIAze_’Y(T_t)/z’ T >t + T,

where we have defined A; = A,(), A, = A,(1), and A =
(A, A,). In optimal control theory, the quantity we wish to
minimize, as a function of the initial and final times, is
called the cost function. Having an explicit expression for
the cost function generated by the LOP, A; op(A, 1, T), we
can now use the verification theorems of optimal control
theory to determine whether the LOP is the optimal pro-
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tocol [23,24]. We first consider the case when 7' <<t + 7.
For the LOP to be optimal, the cost function must satisfy
the Hamilton-Jacobi-Bellman (HJB) equation correspond-
ing to the dynamical equations for the system [Eq. (8)]
[24]:

aa —max[ ZF&

X"()

o0
2 GAGA

] (16)

To check that the cost function is a solution to this equa-
tion, one substitutes in A;gp for T =< ¢ + 7 on the right-
hand side (RHS), and then optimizes this at each time s
with respect to X* (being the set of control parameters). We
must check that A gp is a solution to the HIB and that the
maximum on the RHS is realized when X“(¢) is precisely
that prescribed by the LOP. Performing the substitution, we
find that the RHS is

max[{ OIX{ol* + IX51* + n(0]X5, P18kA,),  (17)
where ¢ = (A;/A,)e "T=0 = and 7(r) = 1. Note that
v is already fixed by the LOP, and thus does not take part in
the optimization. We performed this maximization over X*
numerically, and verified that whenever { = 1 = 7, the
maximum is obtained by the locally optimal U. Thus
|Xt,| = g and |X%)| = |X4,| = 0. The RHS of the HJB
equation is therefore yA e~ Y7 =9 and this is indeed equal
to dALop/(d1), for T =t + 7, being the left-hand side.
Since the derivatives of Ajgp that appear in the HJB
equation are all continuous for 7=t + 7 (the final re-
quirement of the verification theorem), the LOP is the
optimal protocol for T = ¢ + 7.

To determine whether the LOP is optimal for T = ¢ + 7,
we note that the derivatives of A op are not continuous at
t=T — 7. As a result, the classic verification theorem
employed above no longer applies; we need a new verifi-
cation theorem, developed in the last decade [25], that uses
generalized solutions of second-order partial differential
equations, referred to as viscosity solutions [26]. Applying
this “viscosity” verification theorem to the LOP protocol
for a qutrit shows that it remains optimal for 7>t + 7.
Since viscosity solutions will be unfamiliar to most read-
ers, the details of this analysis will be presented elsewhere.
We have also performed the analysis for the case when the
eigenvalues of X are not equally spaced, and in this case we
find that the locally optimal protocol is not globally
optimal.

In summary, we have found the class of all locally
optimal feedback protocols in the regimes of good control
and strong feedback, and obtained explicit expressions for
the best of these for N = 3 and N = 4. We have also shown
that the former is globally optimal for some, but not for all,
observables. The question of how to beat the LOP for a
single qutrit when it is not optimal is an interesting one,
and will be the subject of future work.

We thank Michael Hsieh for suggesting functional
analysis for proving theorem , which was very useful,

and one of the referees for simplifying our proof with the
use of an upper bound.
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