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We use the nonperturbative Contractor-Renormalization method (CORE) in order to derive an effective

model for triplet excitations on the Shastry-Sutherland lattice. For strong enough magnetic fields, various

magnetization plateaux are observed, e.g., at 1=8, 1=4, 1=3 of the saturation, as found experimentally in a

related compound. Moreover, other stable plateaux are found at 1=9, 1=6, or 2=9. We give a critical review

of previous works and try to resolve some apparent inconsistencies between various theoretical

approaches.
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The Shastry-Sutherland lattice [1] and its realization in
the material SrCu2ðBO3Þ2 have been attracting a lot of
attention due to its fascinating behavior in a magnetic field
[2–4], namely, that magnetization plateaux have experi-
mentally been observed for values of m ¼ 1=8, 1=4, and
1=3 of the saturation value. The Shastry-Sutherland lattice,
sketched in Fig. 1(a), is a two-dimensional (2D)
Heisenberg antiferromagnetic spin-1=2 coupled-dimer sys-
tem which Hamiltonian reads

H ¼ J
X

hi;ji
Si � Sj þ J0

X

hhi;jii
Si � Sj � h

X

i

Szi : (1)

Experiments with SrCu2ðBO3Þ2 indicate that the ratio
between inter- and intradimer coupling should be close to
J0=J � 0:65 where the ground-state is exactly given by the
product of singlets on J bonds [5]. In the presence of a
finite magnetic field h, polarized triplets are created on the
dimer bonds so that low-energy properties can be described
with an effective model of these ‘‘particles’’: since these
triplets are hard-core bosons moving on an effective square
lattice, they can typically exhibit compressible superfluid
or incompressible Mott phases depending on the filling
[5,6]. In the original language, these two phases corre-
spond, respectively, to absence or presence of magnetiza-
tion plateaux.

In order to provide a simple picture, let us recall that the
triplet hopping is strongly reduced on frustrated lattices,
and therefore, the physics is governed by effective
Coulomb repulsion, resulting in various insulating phases
known as Wigner crystals. Following these pioneering
works, other theoretical approaches have confirmed the
occurrence of several plateaux [5,7]. While all approaches
agree to describe m ¼ 1=2 or 1=3 plateaux, the situation is
less clear at lower magnetization.

Experimentally, because of accessible fields, the first
plateaux were discovered at 1=8 and 1=4 [3], but recently,
translation symmetry breaking has been observed above
1=8 [8,9] as well as evidence of 1=6 plateau [10]. By using
torque measurements, Sebastian et al. [11] have suggested
additional magnetization plateaux for more ‘‘exotic’’ val-

ues like 1=9, 1=7, 1=6, 1=5, and 2=9. Although an agree-
ment on these values has not been reached yet, these results
are quite exciting and ask for a thorough theoretical
analysis.
Because of the lack of powerful numerical techniques or

unbiased analytical tools to tackle 2D frustrated systems, a
promising approach consists in deriving an effective hard-
core bosonic model. Because one is interested in low-
magnetization (i.e., low filling), long-range effective inter-
actions are crucially needed and can only be captured
thanks to efficient algorithms. Recently, perturbative con-
tinuous unitary transformations up to high orders have
provided such an effective model [12]. In this Letter, we
use the nonperturbative Contractor Renormalization
(CORE) technique [13,14] in order to derive an effective
model for the polarized triplets. Then, in order to provide
an unbiased analysis of this model, we solve it exactly on
various clusters and by finite-size scaling analysis, we
predict the existence or not of some plateaux in the ther-
modynamical limit.
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FIG. 1 (color online). Shastry-Sutherland lattice and defini-
tions of some effective interactions: (a) 2-body interaction
between a particle on the bottom left dimer and one on the
labeled dimers. (b)–(d) Typical correlated hopping processes.
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Effective model.—Similar to perturbation theory [5,6],
we base our approach on keeping only the singlet and
polarized triplet states on each dimer [15]. A crucial aspect
of the CORE technique is that it gives a cluster expansion
of the effective Hamiltonian H eff . Basically, the ampli-
tude of local processes can already be captured by solving
a small finite cluster. As a consequence, the only approxi-
mation consists in truncating beyond a certain range of
interactions [13]. In our study, we keep all processes that
can appear on a 3� 3 cluster (corresponding to 18 original
sites). Note that some elementary processes, as nearest-
neighbor repulsion or chemical potential, are already well
captured with a smaller 2� 2 cluster so that different
truncations may give similar amplitudes. Nevertheless,
long-range interactions are crucially needed to describe
low-filling phases. Typically, H eff contains of the order
of 104 terms, similar to what is obtained with high-order
perturbation [12].

Our CORE calculation gives access to the chemical
potential�which corresponds to the spin gap. As sketched
in Fig. 2(a), CORE results are in good agreement with 4th
order perturbation theory [5] up to J0=J ¼ 0:7. Because of
the important role played by diagonal 2-body interactions,
we compare them with high-order perturbation theory [12]
in Fig. 2(a). Clearly, these interactions decrease with dis-
tance and are nonisotropic: for instance, V3 and V

0
3 strongly

differ. Generally, one also notices very good agreement
between perturbation theory (third order [5,6] or higher
[12]) and CORE results at least up to values of J0=J � 0:5.
Beyond this value, other processes become dominant so
that comparison becomes more difficult to perform, and we
will restrict to J0=J � 0:5 in our study.

Besides the discussed 2-body interaction terms, V3p
3 ,

that corresponds to an attractive interaction of three
aligned particles, has a sizeable contribution (�0:7) close
to J0=J � 0:5, quite different from high-order perturbation
by Dorier et al. (�0:4). Although being high-order pro-
cesses in perturbation, we believe that interaction terms
involving three and more particles play an important role in
the formation of plateaux. For example, in the one-
dimensional realization of the Shastry-Sutherland lattice,
namely, the orthogonal-dimer chain, diagonal interaction
terms between several particles are responsible for the
series of infinite plateaux [16].
The effective model also includes off-diagonal processes

which account for hopping terms of bosons (i.e., triplets)
from one dimer to another. In agreement with perturbation
theory [6], we find that simple one-particle hopping terms
are negligible. On the contrary, correlated hopping (i.e.,
when one-particle hops from one dimer to another in the
presence of neighboring particle) is a dominant process,
and we illustrate the three most important such terms in
Fig. 1 and give the corresponding amplitudes in Fig. 2(b).
Even though they may appear small, correlated hopping
terms are very important for the physics of a system as they
favor supersolid phases [17]. We note again a good agree-
ment with perturbation theory up to J0=J � 0:5. Beyond
that, as for diagonal terms, we observe strong variations of
the amplitudes that indicate the limit of validity of our
CORE truncation.
Validity of the CORE approach.—It is known that the

physics of the Shastry-Sutherland model changes from a
dimer state to a 2D-like Heisenberg phase above ðJ0=JÞc ’
0:70, possibly with an intermediate plaquette phase [5].
Naturally, the question of the validity of our CORE ap-
proach emerges. In this regime, we observe that (i) basic
processes amplitudes do not converge with different cluster
sizes; (ii) ground-state has zero overlap with our subspace.
Therefore, CORE procedure is only applicable below this
critical value.
Another useful tool to ascertain the validity of CORE

approach is to compute exactly on small clusters the re-
duced density matrix weights of retained states [14]. A
numerical analysis done on 16-site cluster confirms that the
total weight of the 2 kept states exceeds 85% as long as
J0=J � 0:65. This gives us confidence that effective inter-
actions should decay fast enough so that our CORE pro-
cedure is accurate in this region. Because of the reduced
accuracy close to this J0=J value [which describes the
SrCu2ðBO3Þ2 compound], we will restrict most of our
findings to J0=J ¼ 0:5 where various CORE truncations
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FIG. 2 (color online). Effective amplitudes, defined in Fig. 1,
calculated with CORE (solid lines) and perturbation theory
(dashed lines, see text): (a) � and 2-body diagonal terms;
(b) correlated hoppings and high-order perturbation result for
ta1h and ta3 from Dorier et al. (private communication).
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give similar models. Still, this value is reasonably close to
the experimental one, and no qualitative changes are ex-
pected in this region. In particular, the same magnetization
plateaux should occur.

In all these effective models approaches, one must dis-
tinguish the two steps: first, an effective Hamiltonian is
derived; then, because it is still an interacting quantum
problem, one needs to resort to an efficient technique to
study it. Although it is a bosonic model, the presence of
positive off-diagonal terms prohibits quantumMonte Carlo
calculations. Possible alternatives are mean-field analysis
[12] which main drawback is to overestimate the tendency
to form plateaux and also needs a careful numerical analy-
sis on finite clusters. Given the various small amplitudes,
we prefer not to make any further assumption, and we
provide exact diagonalizations (ED) of these effective
models on finite lattices.

Simulations of the effective model.—By solving exactly
the effective models for various bosonic fillings, it is
straightforward to construct the magnetization curve by a
Legendre transform. A typical plot is given in Fig. 3(a)
where we compare data obtained with the microscopic and
effective models on N ¼ 32 lattice. Because a given finite

lattice cannot accommodate all magnetization values (only
multiples of 2=N are allowed), the magnetization curve
presents many steps. Thus, we cannot conclude yet about
the existence of other plateaux, such as 1=6, and one needs
to do a careful finite-size extrapolation to get information
on the thermodynamical limit.
Nevertheless, for this system size, Fig. 3(b) shows that

our effective Hamiltonian is extremely accurate, as it re-
markably coincides with exact values (both for plateaux
widths and locations) at least for magnetization m � 0:5.
Moreover, this accuracy is excellent up to J0=J � 0:4, and
we only observe a small disagreement for m ¼ 1=2 and
J0=J ¼ 0:5. A huge advantage of our effective model is
that, although it involves many terms (basically, all terms
up to 9-body), due to Hilbert space reduction, we are able
to solve systems twice as large as for the microscopic
model, which makes feasible a finite-size scaling. We
have therefore solved H eff on a N ¼ 64 lattice, and its
magnetization curve is given in Fig. 3(a). Naturally, there
are twice as many finite-size steps, but the main message is
thatm ¼ 1=4 andm ¼ 1=8 plateaux do not change, both in
sizes and locations. This strongly suggests that our model
does exhibit magnetization plateaux in the thermodynam-
ical limit. Because we have chosen particular clusters,
there is also the possibility to have more stable plateaux
close to these fractions, and for instance, some plateaux
that we find could be unstable towards phase separation.
Other possible fractions can be investigated by perform-

ing similar calculations with other square clusters, like
N ¼ 36 and 72, that can also accommodate m ¼ 1=9,
1=6, 2=9, and 1=3. Data are shown in Figs. 3(c) and 3(d)
and confirm (i) the accuracy of our CORE effective model
and (ii) the stability of some plateaux when the system size
is doubled, strongly indicating that they do persist in the
thermodynamical limit.
In order to give a general view of various fractions, we

now turn to a more systematic study of our effective
Hamiltonian, restricted to the typical J0=J ¼ 0:5 value,
on various square or rectangular clusters. By computing
the magnetization curves on several lattices, we can per-
form a finite-size scaling of the plateaux widths (see
Fig. 4). Note that we restrict our calculations to clusters
that can accommodate a given insulating phase, i.e., are not
frustrated, according to the known patterns [3,5]. Since we
also have access to density-density correlations, we can
also confirm these patterns (data not shown): for instance,
atm ¼ 1=3 (resp.m ¼ 1=4), the plateau is formed by filled
diagonal stripes separated by two (resp. three) empty ones.
Our scaling provides clear evidence that there are large

plateaux for m ¼ 1=3 and 1=4 (besides m ¼ 0 and 1=2) in
the thermodynamical limit [18]. Moreover, within the very
good accuracy of our effective model, finite-size scaling
indicates smaller, but stable, plateaux for 2=9, 1=6, 1=8,
and 1=9 of typical sizes between 0:01J and 0:05J.
Discussion.—By allowing for inhomogeneous patterns,

a variety of fractions have been found theoretically [11,12].
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FIG. 3 (color online). (a) Magnetization curve obtained with
microscopic and CORE models on N ¼ 32 lattice and CORE
results on 64-site for J0=J ¼ 0:5. (b) Phase diagram for N ¼ 32
as a function of J0=J and magnetic field h=J: CORE results
(lines) agree with ED (symbols) for locations of m ¼ 1=2, 1=4,
and 1=8 plateaux which are allowed on this cluster. (c), (d) Same
as (a), (b) for N ¼ 36 and 72. On these clusters, m ¼ 1=2, 1=3,
1=6, 1=9, or 2=9 plateaux are allowed.
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Experimentally, there is recent evidence that translation
symmetry is broken for several other magnetization frac-
tions [10,11]. Clearly, given the small energy scales that
stabilize one fraction with respect to another, the accuracy
of the calculation is crucial. In that sense, systematic
perturbative [12] or CORE expansion (as in this Letter)
are promising since they are controlled techniques. For
instance, our relative error on the ground-state energy for
N ¼ 32 and m ¼ 1=8 is 0.3%.

However, from these effective models, a second step is
to solve them in the most unbiased way: here, we have
combined exact diagonalization and finite-size scaling, and
we find highly stable plateaux for 1=2, 1=3, 1=4, but also
smaller plateaux for 2=9, 1=6, 1=8, and 1=9. While some of
these fractions coincide with [12], we also have some
differences that ask for a clarification.

A first discrepancy is the absence in our data of plateaux
for m ¼ 2=15, observed in [12], or possible other fractions
such as 1=7 or 1=5 found in [11]. Clearly, because our exact
simulations are restricted to large but finite clusters, we
cannot perform finite-size scaling for some fractions (as
2=15 that would require large unit cells). By choosing
adequate shapes or boundary conditions, it might be pos-
sible to investigate some of these other fractions.

A more crucial issue deals with m ¼ 1=4 and 1=8 pla-
teaux that are stable in our calculations, and also found
experimentally [2], but absent in [12]. A possible explana-
tion could be that these fractions are unstable towards
phase separation, but on our finite clusters, this phenome-
non cannot be observed. However, these plateaux widths
are almost constant when the system size is doubled (see
Fig. 4) so that we do strongly believe that they persist in the

thermodynamical limit. At this point, let us recall that our
effective model is different from [12], in particular, for
interactions with more than two bodies; for instance, if we
only consider 2-body diagonal terms, then the m ¼ 1=4
plateau becomes unstable, in agreement with [12].
Therefore, we think that many-body terms ask for a careful
analysis.
As a conclusion, we are convinced that reliable effective

Hamiltonians are crucial to understand the very rich low-
magnetization properties of the Shastry-Sutherland sys-
tem. With the CORE technique, we have derived such an
effective model and, with finite-size scaling analysis, we
provide a microscopic origin of the experimentally ob-
served 1=3, 1=4, and 1=8 plateaux, but we also confirm
the possibility of other plateaux at 1=9, 1=6, and 2=9, as
found in recent related studies [10–12]. The remaining
discrepancies between these approaches call for a system-
atic unbiased study that would combine mean-field ideas
with exact diagonalizations.
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FIG. 4 (color online). Finite-size scaling of the plateaux widths
for various m< 1=2 from microscopic and CORE models (re-
spectively, open and filled symbols) for J0=J ¼ 0:5 on clusters
with 24, 32, 36, 48, 64, 72, and 96 sites (square and rectangular).
Note the excellent agreement between both models solved on the
same lattices.
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