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We present a theory of spin-selective Aharonov-Bohm oscillations in a lateral triple quantum dot. We

show that to understand the Aharonov-Bohm (AB) effect in an interacting electron system within a triple

quantum dot molecule (TQD) where the dots lie in a ring configuration requires one to not only consider

electron charge but also spin. Using a Hubbard model supported by microscopic calculations we show

that, by localizing a single electron spin in one of the dots, the current through the TQD molecule depends

not only on the flux but also on the relative orientation of the spin of the incoming and localized electrons.

AB oscillations are predicted only for the spin singlet electron complex resulting in a magnetic field

tunable ‘‘spin valve.’’
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The Aharonov-Bohm [1] (AB) effect results from the
accumulation of phase by a charged particle moving in a
ring threaded by a magnetic flux [2,3]. AB oscillations are
detected, e.g., in the magnetization of a macroscopic num-
ber of electrons in metallic rings [4] as well as in the optical
emission from a charged exciton in a nanosize semicon-
ductor quantum ring [5]. At the same time, the preparation,
manipulation and detection of individual spins of localized
electrons in nanoscale semiconductor systems are impor-
tant elements of nanospintronic applications [6–8], with
efficient generation and detection of spin polarized carriers
playing a crucial role. The electron spins can be localized
in single and coupled semiconductor quantum dots (QDs)
defined and controlled electrostatically [9–14] with poten-
tial applications as elements of electron-spin based circuits
[15,16], coded qubits [17], entanglers [18], rectifiers and
ratchets [19,20]. The spin blockade technique in a double
dot system used for the conversion of spin to charge
information has played an important role in the develop-
ment of such applications [21].

We discuss here the possibility of the coexistence of spin
blockade with AB oscillations in a lateral TQD in a ring
geometry [13,22]. We describe a TQD, shown schemati-
cally in Fig. 1(a), where two dots, 1 and 3, are connected to
the leads and in addition to dot number 2. A single electron
spin is localized in dot 2 by lowering the confining poten-
tial. The transport of an additional electron through the
TQD will now depend on the relative orientation of the
spin of the incoming and localized electrons. If the two
spins are antiparallel, as shown in Fig. 1(b), the additional
electron can tunnel from the left lead to dot 1, and proceed
either directly or through dot 2 to dot 3 and thus to the right
lead. In the presence of the magnetic field the two paths
acquire a different phase and can interfere, resulting in the
AB oscillations of the current amplitude (upper inset).
When the spin of the incoming electron is parallel to the

spin of the electron in dot 2, the Pauli exclusion principle
prevents tunneling through dot 2, resulting in a single
tunneling path and the absence of AB oscillations (lower
inset). We present here a theory of the signature of these
spin-selective AB oscillations in transport through a TQD.
The electronic properties of a TQD are treated by a fully
microscopic LCHO-CI approach [23] and by Hubbard and
t-J models with exact many-electron eigenstates obtained
using configuration-interaction (CI) method [24]. The
Fermi Golden Rule and the sequential tunneling approach
[25] are used to calculate the current through the TQD
weakly connected to two noninteracting leads. The current

FIG. 1 (color online). (a) Schematic diagram of the TQD close
to the QP. (b) Path of an added electron with antiparallel spin can
form a loop and the corresponding energy level E exhibits AB
oscillations with the magnetic flux � while path of an electron
with parallel spin is spin blockaded.
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flows when the chemical potential of the TQD is equal to
the chemical potential of the leads. This can also be under-
stood in terms of degeneracies of many-electron charge
configurations (N1, N2, N3) with Ni the number of elec-
trons in dot i. The degeneracy point described here, re-
ferred to as the quadrupole point (QP), involves the one
electron configuration (0, 1, 0) and two-electron configu-
rations (1, 1, 0), (0, 2, 0), and (0, 1, 1), with one electron
always confined in dot 2, as shown in Fig. 1(b).

For clarity we only present results of the Hubbard model
with one orbital per dot [22,24]. The Hamiltonian of the
TQD subject to a uniform perpendicular magnetic field,
B ¼ Bẑ, is given by

H ¼ X
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where the operators di� (dyi�) annihilate (create) an elec-

tron with spin � ¼ �1=2 on orbital i (i ¼ 1, 2, 3). ni� ¼
dyi�di� and %i ¼ ni# þ ni" are the spin and charge density

on orbital level i. Each dot is represented by a single orbital
with energy Ei� ¼ Ei þ g��BB�þ E0, where g� is the
effective Landé g factor, �B is the Bohr magneton and E0

is the energy shift measured from the Fermi level of the
leads and tunable by external gates. The dots are connected
by magnetic field dependent hopping matrix elements ~tij ¼
tije

2�i�ij [22]. For the three dots in an equilateral configu-

ration �12 ¼ �23 ¼ �31 ¼ ��=3 and �ji ¼ ��ij,

where � ¼ BA=�0 is the number of flux quanta threading
the area A of the triangle, �0 ¼ hc=e, e is the electron
charge, c is the speed of light and @ is the Planck’s constant.
The interacting part of the Hamiltonian is parametrized by
the on-site Coulomb repulsion, Ui, and the interdot direct
repulsion term Vij.

In order to describe transport through the TQD we first
determine the QP of the isolated TQD. We start by deter-
mining the ‘‘classical QP’’ where we neglect the interdot
tunneling and require the four configurations A � ð1; 1; 0Þ,
B � ð0; 2; 0Þ, C � ð0; 1; 1Þ and D � ð0; 1; 0Þ to have equal
energy. Their energies are �A ¼ E1 þ E2 þ V12 þ 2E0,
�B ¼ 2E2 þU2 þ 2E0, �C ¼ E2 þ E3 þ V23 þ 2E0, and
�D ¼ E2 þ E0. The QP condition without tunneling re-
quires �A ¼ �B ¼ �C ¼ �D þ�L, where �L is the chemi-
cal potential of the leads. This implies that at the QP

EQ
1 ¼ �L � E0 � V12, EQ

2 ¼ �L � E0 �U2 and EQ
3 ¼

�L � E0 � V23.
Let us consider now the case of finite tunneling matrix

elements. The (0, 1, 0) charge configuration describes the

two spin states of an electron localized in dot 2, j2�i �
dy2�j0i with energy E2 (j0i is the vacuum state). The two-

electron classical charge configurations (1, 1, 0), (0, 2, 0),
and (0, 1, 1) correspond to the following quantum spin

singlet configurations: jS1i ¼ 1ffiffi
2

p ðdy1"dy2# þ dy2"d
y
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2#Þj0i. The

Hamiltonian describing the motion of the spin singlet
pair takes the form
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At the classical QP, we have �A ¼ �B ¼ �C. If t23 ¼ t12 ¼
t13=

ffiffiffi
2

p
, we can diagonalize the Hamiltonian exactly by

Fourier transforming into a new basis: jK1i ¼ 1=
ffiffiffi
3

p ðj1i þ
j2i þ j3iÞ, jK2i ¼ 1=

ffiffiffi
3

p ðj1i þ ei2�=3j2i þ ei4�=3j3iÞ, and

jK3i ¼ 1=
ffiffiffi
3

p ðj1i þ e�i2�=3j2i þ e�i4�=3j3iÞ with eigen-
values "1 ¼ E� 2jtj cosð2��=3Þ, "2 ¼ E�
2jtj cos½2�ð�þ 1Þ=3�, and "3 ¼ E� 2jtj cos½2�ð��
1Þ=3�, and t � t13. Since one of the electrons is kept in
dot 2, the energy spectrum of a pair of singlet electrons is
essentially the same as that of a single electron added to a
resonant TQD, with the energy levels oscillating with a
period of one flux quantum [22]. Away from the resonance
the level crossing is replaced by anticrossing.
A pair of spin triplet electrons describes only (1, 1, 0)

and (0, 1, 1) charge configurations. The corresponding two

spin triplet configurations for SZ ¼ 1 are jT1i ¼ dy1"d
y
2"j0i

with energy �AðBÞ and jT2i ¼ dy2"d
y
3"j0i with energy �CðBÞ,

with �AðBÞ ¼ �A þ g��BBSz. The eigenenergies of the

2� 2 triplet Hamiltonian are "�T ¼ 1=2f�AðBÞ þ �CðBÞ �
½ð�AðBÞ � �CðBÞÞ2 þ 4jt13j2�1=2g. By comparing the singlet
and triplet eigenvalues we see that singlet is the ground
state at B ¼ 0 and the eigenvalues of the triplet do not
oscillate as a function of the magnetic field. Even at
this qualitative level, we obtain a remarkable result that
triplet states do not oscillate with the magnetic field while
singlets do.

FIG. 2 (color online). Low energy spectrum of the two-
electron TQD (upper panel) and total spin of the ground state
(lower panel) at the QP versus the magnetic flux. The QP
condition was found numerically for �1 ¼ �3 ¼ 2:44jtj and
�2 ¼ 2:77jtj.
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In the case of finite tunneling each classical configura-
tion is no longer an eigenstate of the system. Therefore, we
will define QP as the point in the parameter space where
the ground state energies of two and one electrons differ by
�L and the three degenerate two-electron configurations

are found with the same probabilities. Then, at the QPEi ¼
EQ
i þ �i, where the energies �i are quantum corrections

that are obtained numerically, with �1 ¼ �3 for the sym-
metric case described here.

We shall analyze now the magnetic field dependence of
the two-electron energy spectrum close to the QP. The
numerical CI calculations include the full Hilbert space
generated from the three orbital levels. Hubbard parame-
ters were obtained from the LCHO calculation with an
interdot distance of 61.2 nm: t ¼ �0:23 meV, Ui ¼
50jtj and Vij ¼ 10jtj, and g� ¼ �0:44 of GaAs is used.

The parameters are similar to the ones obtained from first
experiment in Ref. [24] except for the larger tunneling
matrix element and smaller TQD area. The upper panel
of Fig. 2 shows the lower part of the energy spectrum for
E0 ¼ �jtj, while the lowest panel indicates the total spin
of the ground state. We find the ground state at B ¼ 0 to be
spin singlet (solid line) with the triplet an excited state with
energy �ST above the singlet. The singlet energy oscillates
with Bwith period of one flux quantum while the energy of
the triplet decreases monotonically with increasing mag-
netic field due to Zeeman energy. Notice that energy of the
triplet shows a small oscillation due to a coupling with
higher energy configurations. The oscillating singlet en-
ergy and monotonically decreasing triplet energy leads to a
number of transitions between singlet and triplet with
increasing magnetic field. These transitions interrupt the
AB oscillations of the singlet, and lead to their end at a
critical value of the magnetic field, BC ¼ �ST=g

��B, with
corresponding critical flux �C ¼ ABC=�0, indicated in
Fig. 2. With �ST of the order of � 0:2 meV and Zeeman
energy 0:02 meV=T [8] the expected values of BC are �
1–10 T. Above BC the triplet is the ground state. Hence the
presence of a trapped electron should lead to AB oscilla-
tions of the tunneling electron, interrupted and eventually
terminated by the singlet-triplet transitions.

Figure 3 shows the dominant charge ground state con-
figurations of the TQD at two different values of the
magnetic flux quantum, � ¼ 0 (upper panel) and � ¼
0:44 (lower panel), versus the voltages Vg1 and Vg2 for a

given E0 ¼ �jtj. The on-site energies Ei’s were assumed
to change linearly with the voltages Vg1 and Vg2, Ei ¼
�iVg1 þ �iVg2 þ 	i, with �i, �i extracted from experi-

ment in Ref. [13]. We see that for � ¼ 0 the stability
diagram shows only a triple point, while for � ¼ 0:44
the QP is clearly visible.

We now discuss how these spin-selective AB oscilla-
tions can be observed in transport. Following Ref. [26], the
Hamiltonian of the TQD connected to two leads is given by
H ¼ HL þHTQD þHLD, where HL is the Hamiltonian of

the two noninteracting leads. HTQD corresponds to the

isolated triple dot with the on-site energies changed by
the applied bias �V as Ei� ! Ei� � �V=2. HLD is the
tunneling Hamiltonian between the leads and the TQD.
The leads are described with a one-dimensional tight-
binding model with nearest neighbor hopping tL, on-site
energies �L (�R) for the left (right) leads, and dots and leads
hopping tLD [26]. The current through the system is eval-
uated using a set of master equations for the occupation
probabilities within the sequential tunneling approxima-
tion [25]. This approach neglects higher order processes
such as cotunneling, important for high tunnel-coupling
strengths and for temperatures below the Kondo tempera-
ture [27–29]. The occupation probabilities are then calcu-
lated using a detailed balance condition imposed by the
conservation of charge. The spin components of the current
in the linear regime in the lowest order in the coupling tLD
and at zero temperature are then given by I� ¼
e�=ð2@ÞjtLDj2
ð"FÞ�VC��ð"F � ð"2;G � "1;GÞÞ where

"2;Gð"1;GÞ is the ground state energy of the two (one)

electrons in a TQD and 
ð"FÞ is the density of states in
the leads at the Fermi level, with 
Lð"F;LÞ � 
Rð"F;RÞ.
C� ¼ 1=3 for � ¼# (singlet ground state) and C� ¼ 1
for � ¼" (triplet ground state). Note that the probability
of having the extra electron in each dot at the QP is exactly
1=3 for the singlet ground state while for the triplet the
extra electron can be found in dots 1 and 3 with probabil-
ity 1=2.
Next we present the linear conductance G ¼ I=�V. The

calculations were done at 50 mK (kBT ¼ 0:0145jtj),�V ¼
2� 10�3jtj and �L ¼ 0. In addition, jtLj ¼
23:72 meV � jtj, E0, �V. Since transport through the

FIG. 3 (color online). Stability diagram as a function of Vg1

and Vg2 of the TQD close to the QP with charge configurations

ð1; 1; 0Þ; ð0; 2; 0Þ, (0; 1; 1) and (0; 1; 0) at (a) � ¼ 0 and (b), � ¼
0:44. The classical QP (t ¼ 0) is found at Vg1 ¼ Vg2 ¼ 0 while

the quantum one at � ¼ 0:44 is indicated by the white circle.
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TQD is allowed whenever the single-particle and the two-
particle ground states are on resonance, the AB oscillations
of the energy spectra lead to repeated peaks in the current.
The spin components of the conductanceG� ¼ I�=�V are
shown in Fig. 4. At low magnetic fields, the spin-down
current is dominant and transport is mainly through the
lowest oscillating singlet state. When the ground state of
two particles becomes triplet, spin up current is dominant
until the current is totally suppressed. The results are valid
for temperature higher than the Kondo temperature, which
can be made exponentially small by reducing the coupling
of a TQD to the leads.

In summary, we presented a theory of spin-selective AB
oscillations in a ringlike TQD with one electron localized
in one dot. We showed that only the energy of the singlet
oscillates as a result of the interference between the two
possible paths. The magnetic field polarizes the spin of the
localized electron leading to the transport of electrons with
a specific spin polarization. The AB oscillation of the
singlet electron pair is reflected as periodic peaks in the
spin-down polarized current. At higher magnetic field, the
Zeeman energy causes a singlet-triplet transition, which
results in a change of the dominant spin component of the
current.
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FIG. 4 (color online). Spin-down (solid line) and spin-up
(dashed line) components of the conductance in units of G0 ¼
e2jtLDj2=@jtLj2 versus the number of flux quantum � for the
same parameters as in Fig. 2. The inset shows the energy
spectrum of the two-electron complex (as in Fig. 2), together
with the one electron lowest levels (thick blue line).
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