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We study a suspended graphene sheet subject to the electric field of a gate underneath. We compute the

elastic deformation of the sheet and the corresponding effective gauge field, which modifies the electronic

transport. In a clean system the two-terminal conductance of the sample is reduced below the ballistic

limit and is almost totally suppressed at low carrier concentrations in samples under tension. Residual

disorder restores a small finite conductivity.
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Introduction and results.—Graphene layers which are
one or a few carbon atoms thick [1,2] combine a novel
electronic spectrum (‘‘massless Dirac fermions’’ [2,3]) and
unusual structural and mechanical properties [4–9]. (For
general reviews, see Refs. [10–12].) Originally, graphene
sheets lying on a quartz substrate were prepared and in-
vestigated but later it turned out that the freely hanged
membranes of macroscopically large sizes can be derived
[4]. The electronic and mechanical properties of these
membranes are being intensively studied [5–9,13–16].
They demonstrate a much higher electron mobility than
graphene sheets on a substrate [13,14,16] and extraordi-
nary mechanical stiffness [7,8], which makes them espe-
cially interesting for applications.

Below we show that unavoidable deformations of the
membranes by an applied electric field can strongly affect
their transport properties. As a model, we consider a strip
of graphene clamped at two parallel edges x ¼ �L=2, see
Fig. 1(a). The strip is suspended above a control gate,
whose electric field induces electron concentration n in
graphene and exerts on it the pressure P ¼ ð2�e2n2Þ=�.
We assume that the length of the strip in the undeformed
state is Lþ �L, where the ‘‘slack’’ �L can be of either
sign. Negative �L implies the sheet is under tension al-
ready at P ¼ 0.

Our main results include the deformation h0 and the
ballistic conductance G as a function of n. They are shown
in Figs. 2(a) and 3, respectively, for three representative
�L. We also derive the analytical formula

GðnÞ ’ e2

h

�
4

�
kF � jAyj

�
W; (1)

where W is the width of the sample, kF ¼ ffiffiffiffiffiffiffiffiffiffi
�jnjp

is the
Fermi wave vector, and Ay of dimension of inverse length

is related to the deformation [Fig. 2(b) and Eq. (6)].
Equation (1) is valid for kF � jAyj. In the opposite limit,

which is realized for �L < 0 (graphene initially under
tension [7,9]) and small n, we find a nearly complete

suppression of ballistic transport. The physical mechanism
of this phenomenon is as follows. The deformation shifts
the Dirac points by the amount Ay [Fig. 1(b)], which

creates a mismatch between the graphene leads and the
suspended region. If this shift exceeds the diameter 2kF of
the Fermi circle, the carriers are fully reflected.
Recent experiments [16] are in a qualitative agreement

with Fig. 3(a); however, at very low n the conductivity
tends to a finite value�e2=h. We attribute this to disorder-
assisted tunneling. Finally, we predict that if large n can be
studied in future experiments, then G should become non-
monotonic with a maximum at

n ¼ 3:1� 1012 cm�2 � ð1 �m=LÞ4=5; (2)

which is roughly independent of �L, see Fig. 3(b).
Height profile.—Determining the profile hðxÞ of a

clamped elastic strip under a uniform load P is a standard
problem of the elasticity theory. Under the condition
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FIG. 1 (color online). (a) Sketch of the model of a suspended
graphene sheet under consideration. (b) Fermi circle positions in
the Brillouin zone in the leads (left) and in the suspended region
(right).
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h0 � maxhðxÞ � L it has a well known analytic solution
[17]. We focus on the case where n is either comparable

or much larger than n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið16=�Þð��Þ=ðe2L3Þp �

ð6� 109 cm�2Þ=ðL=1 �mÞ3=2, where � � 1:1 eV is the
bending rigidity of graphene [18]. In this case the defor-
mation is nearly parabolic:

hðxÞ ’ h0

�
1� 4x2

L2

�
;

L

2
� jxj � L

lnu

u
; (3)

where u ¼ ðn=n0ÞðL=h0Þ1=2 � 1. The maximum deforma-
tion h0 is the positive root of the cubic equation

�
h20 �

3

16
L�L

�
h0 ¼ 3�

64

e2

�E
ðnL2Þ2; (4)

where E � 22 eV= �A2 is the two-dimensional Young’s
modulus of graphene [7,8]. At very large concentrations
n, the height h0 is given by the asymptotic formula

h0 ’
�
3�

64

e2

�E
n2L4

�
1=3

: (5)

If n is not large, it is just as easy to solve Eq. (4) numeri-
cally. Representative results are plotted in Fig. 2(a).

The deformation induces perturbations of two types
acting on electrons: the scalar potential VðxÞ and the ef-

fective vector potential [19,20] AðxÞ. We examine them
below, starting with AðxÞ.
Vector potential.—The shift of the Dirac points

[Fig. 1(b)] is equivalent to the effect of a constant vector
potential A ¼ ðAx; AyÞ. We use this latter formalism in the

following as it can be easily generalized to more complex
situations. The role of A is the largest when the ‘‘zigzag’’
direction is along the y axis. Assuming this is the case, we
obtain

AxðxÞ ¼ 0; AyðxÞ ¼ C1�
�

a

t

E
¼ C1�

�

a

PL2

8Eh0
; (6)

where � ¼ �d logð�0Þ=d logðaÞ � 2 is the dimensionless
electron-phonon coupling parameter, �0 � 3 eV is the

nearest neighbor hopping, a � 1:4 �A is the distance be-
tween nearest carbon atoms, � ¼ �1 is the valley index,
t ’ PL2=ð8h0Þ is the horizontal component of tension per
unit length at the edges, and parameter C1 � 1 is deter-
mined by the microscopic force constants [21,22]. The
corresponding pseudomagnetic field BðxÞ ¼ �@xAy con-

sists of two spikes at the edges x ¼ �L=2.
Transport.—To compute the conductance G we assume

perfect semi-infinite graphene leads of the same chemical
potential at both ends of the strip. (In a more realistic
situation the results should be corrected for the contact
resistance in series with 1=G.) Since the perturbations
depend only on x, the ky momentum is conserved.

However, the pseudomagnetic field at the edges shifts the
mechanical momentum, ky ! ky � Ay, of electrons inside

the strip. This leads to partial reflection and, respectively,
partial confinement for the quasiparticles approaching the
edges from the outside and the inside of the strip. Similar
effects have been previously examined in the context of
Dirac particles subject to a nonuniform real magnetic field
[23].
For Ay ¼ const, transmission coefficient TðkyÞ is

TðkyÞ ¼
kð0Þ2kðAyÞ2

kð0Þ2kðAyÞ2 þ k2FA
2
ysin

2½kðAyÞL	
; (7)

where kðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � ðky � qÞ2

q
. If kðAyÞ2 < 0, then kðAyÞ

is pure imaginary, so that sin2½kðAyÞL	 ! �sinh2jkðAyÞLj.
In this case TðkyÞ is exponentially small. The plot of TðkyÞ
is shown in the right-hand panel of Fig. 4 using the pa-
rametrization ky ¼ kF sin� for ��=2< �< �=2 and n ¼
2� 1011 cm�2. The transmission is indeed almost zero for
a range of incident angles �. In addition, Fabry-Pérot
resonances appear because of the multiple scattering off
the two interfaces.
Neglecting the contribution of edge channels, which is

permissible when they are localized by disorder or the
number of bulk channels kFW=� is large, the conductance
can be computed from
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FIG. 2 (color online). (a) Deformation of a suspended gra-
phene sheet of length L ¼ 1 �m vs carrier concentration for
three different �L (slack): �2 nm (stars), 0 nm (dots), and 2 nm
(open circles). (b) The corresponding gauge potential. The top
curve gives the Fermi wave vector kFðnÞ.
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FIG. 3 (color online). Ballistic conductance for a sheet of
width W ¼ 1 �m over (a) narrow and (b) wide interval of n.
�L and the symbols are the same as in Fig. 2. The thick curve is
for the undeformed sheet. The thin lines represent Eq. (1).
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G ¼ 4e2

h
W

Z kF

�kF

dky
2�

TðkyÞ: (8)

In the case kF � jAyj and LkF � 1 this integral reduces to

a simple analytical formula (1) plotted in Fig. 3(b). As one
can see, the deviations from the ballistic limit grow with n,
making GðnÞ nonmonotonic. The position of its maximum
can be found from Eqs. (1), (5), and (6), which yield
Eq. (2).

The behavior of G at small n crucially depends on the
sign of �L. For �L 
 0, the effect of the gauge field
becomes negligible. In contrast, for �L < 0, the conduc-
tance becomes greatly suppressed. Thus, for �L ¼
�2 nm, it nearly vanishes at jnj< 2:0� 1010 cm�2, see
Fig. 3(a).

Disorder effects.—Any real system contains disorder
and its effect on conductance should be examined. We
consider the experimentally relevant case [16] where
(a) �L < 0 and (b) the elastic mean-free path l is compa-
rable to the system size L. In this situation disorder is
important primarily at low n where it relaxes the constraint
of momentum conservation, compensating for the momen-
tum shift due to the gauge field.

For simplicity, we assume 1 � G=ð4e2=hÞ � kFW. In
this regime the disorder is weak enough that its effect on
the average conductance is still negligible yet it is strong
enough to fully mix the transverse modes in the suspended
region. The conductance is limited by the two interfaces
x ¼ �L=2, which act as classical resistors in series [24],
G ¼ Gi=2. Let us compute the conductance of a single
interface Gi.

If disorder near the interface is neglected,Gi is given by
the expression similar to Eq. (8) where TðkyÞ is now the

transmission coefficient through a single interface:
TðkyÞ ¼ ½4kð0ÞkðAÞ	=½fkð0Þ þ kðAÞg2 þ A2

y	. This formula

holds if ky mode is propagating, =mkð0Þ ¼ =mkðAyÞ ¼ 0.

Otherwise, it is evanescent and TðkyÞ ¼ 0. Each evanes-

cent mode decays exponentially either to the left or to the
right of x ¼ 0 interface, depending on which of =mkð0Þ
and =mkðAyÞ is nonzero. At kF < jAyj=2 all modes at the

Fermi energy are evanescent. Therefore, if the disorder is
neglected, Gi vanishes.

Let us now include disorder-induced mixing among the
evanescent and propagating modes, which gives a correc-
tion �TðkyÞ to each TðkyÞ. To the lowest order in the

concentration ns of scatterers, we find

�TðkyÞ ¼
Z AyþkF

Ay�kF

dk0y
2�

Z 1

�1
dxns	Tðky; k0y; xÞ; (9)

where 	Tðky; k0y; xÞ is the off-diagonal transmission coef-

ficient due to a single scatterer at r ¼ ðx; yÞ. Function
�TðkyÞ has the dimension of length, similar to the transport

cross section �s ¼ 1=ðnslÞ. We expect 	Tðky; k0y; xÞ �
ð�s=kFÞ expð�2jkðAyÞxjÞ. Here the exponential represents
the probability of the evanescent wave to reach the scat-
terer and the prefactor provides the correct units and scal-
ing with disorder strength. The dominant contribution to
�TðkyÞ comes from the scatterers located in the strip jxj &
1=jkðAyÞj. Integrating over x, ky, and k0y, we finally get

G ¼ Gi

2
¼ 4e2

h

kFW

�

C2

2jAyjl ¼
�
e2

h

�
2 4C2Wn

jAyj
ðnÞ ; (10)

where C2 is a numerical coefficient and 
ðnÞ is the con-
ductivity of a sample with size L � l. A formal derivation
based on the Green’s function formalism yields C2 ¼ 4.
For estimate, we can take n ¼ 109 cm�2,
� 4e2=h,W ¼
1 �m, and Ay ¼ 2� 105 cm�1. We then find G� 2e2=h,

i.e., an appreciably large value.
Scalar potential.—The deformation of the graphene

strip also creates a scalar potential VðxÞ in the system.
Our estimates below indicate that it is relatively small.
The bare scalar potential is (assuming e < 0):

eVextðxÞ ¼ �P

n
hðxÞ þ�

�
L

2
� jxj

�
tV0

E
; (11)

where the first term is the change in electrostatic potential
due to the change in distance to the gate, the second term
[21,25,26] gives the deformation potential induced by the
uniform elongation t=E, and V0 � 10 eV.
Within the linear screening theory, the Fourier transform

~V of V is ~VðqÞ ¼ ~VextðqÞ="ðqÞ, where "ðqÞ is the dielectric
function. For reasonable carrier concentrations we can
use the Thomas-Fermi (TF) approximation, "ðqÞ ¼
1þ ks=jqj, where ks ¼ 4e2kF=ð�@vÞ is the inverse TF
screening length. Potential VðxÞ can be expressed in terms
of special functions. In the limit ksL � 1 and at distances
greater than k�1

s from the boundaries it reads:

eVðxÞ ’ 1

2�

PV0

Eh0ks

L3

L2 � 4x2
� 8

�

Ph0
nksL

�
�
1þ x

L
ln

��������
L� 2x

Lþ 2x

��������
�
: (12)

The potential at the edge is given by

eV

�
L

2
� 0

�
¼ �PV0L

2

16Eh0
� 4

�

Ph0
nksL

½C3 � lnðksLÞ	; (13)

π
2

π
4

π
4

π
2

θ
0.2
0.4
0.6
0.8

1
T θ

π
2

π
4

π
4

π
2

θ
0.2
0.4
0.6
0.8

1
T θ

FIG. 4 (color online). Left-hand panel: Angular dependence of
the transmission for n ¼ 2� 1011 cm�2, no slack, and L ¼
1 �m. The two curves correspond to the two inequivalent Dirac
points. Right-hand panel: Angular dependence of the transmis-
sion, including the effect of the scalar potential, Eq. (12).
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where C3 � 1. Thus, the divergences in Eq. (12) are cut off
at the distance of the order of the screening length 1=ks
from the edge, as expected.

For n� 3� 1011 cm�2, the deformation and the elec-
trostatic potentials at the edges are comparable in magni-
tude and together amount to about 10% of the Fermi
energy. Results for the transmission coefficient including
VðxÞ (whose singularities have been cut off at the distance
of 1 nm from the edges) are shown in the right-hand panel
of Fig. 4. The scalar potential reduces the Fabry-Pérot
oscillations but does not change much in the integrated
transmission.

Future directions.—There are a number of possible di-
rections for future study. One interesting problem is how
the deformation would affect the quantum Hall effect
(QHE) in the suspended graphene. Below we offer a pre-
liminary discussion of this question.

For the model considered, the effects of the deformation
are restricted to the x ¼ �L=2 interfaces. The Landau
levels near such lines will be modified (except for the N ¼
0 one, which is topologically protected [27,28]).
Quasiclassically, the reflection at the interfaces creates
skipping orbits, which propagate parallel to the y axis but
in opposite directions on the two sides of each interface.
This could lead to backscattering of the edge currents and
modification of the QHE. The effect is the strongest when
kF & jAyj. For low-lying Landau levels, where kF � 1=lB,

an estimate of the external magnetic field B� below which
the QHE is affected can be derived from the condition
lBðB�Þ � jAyj�1. For �L ¼ �2 nm, and Ay � 2�
105 cm�1, it yields B� � 0:7 T.

In a more realistic geometry, a small pseudomagnetic
field will also exist inside the suspended region. Its mag-
nitude is of the order of 0.05 T for the same �L and L.
Landau levels mixing in the bulk occurs when the external
field is comparable or smaller than this value.
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