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We consider the motion of a spin-1=2 impurity in a one-dimensional gas of spin-1=2 fermions. For

antiferromagnetic interaction between the impurity and the fermions, the low temperature behavior of the

system is governed by the two-channel Kondo effect, leading to the impurity becoming completely opaque

to the spin excitations of the gas. As well as the known spectral signatures of the two-channel Kondo

effect, we find that the low temperature mobility of the resulting ‘‘Kondo polaron’’ takes the universal

form � ! 3@v2
F=2�k

2
BT

2, in sharp contrast to the spinless case where � / T�4.
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The motion of an impurity in a quantum liquid is one of
the recurring paradigms of condensed matter physics.
Variants of the problem appear in such well studied situ-
ations as the motion of ions in 3He, muons and positrons in
metals, and holes in metals and semiconductors [1].
Certain multicomponent quantum liquids can also be
studied in a dilute limit where the atoms of one component
may be treated as individually interacting with a thermo-
dynamically large number of atoms of the other compo-
nents. Solutions of 3He in 4He provide the classic example
of this situation [2], while the field of ultracold atomic
physics offers new possibilities [3].

In most theoretical treatments it is usual to ignore the
dynamics of the impurity spin, if present. In this Letter we
will show that for the case of a spin-1=2 impurity moving
in a one-dimensional spin-1=2 Fermi gas the spin dynamics
can completely change the low temperature behavior of the
system. In fact, this system manifests the two-channel
Kondo (2CK) effect [4], in which a simple picture of
scattering of fermions of the gas from the impurity is
inapplicable at low temperatures. Instead the impurity
becomes totally opaque to the collective spin excitations
of the gas while being transparent to the density excita-
tions. As well as unusual spectral properties associated
with the 2CK effect, the low temperature mobility of the

impurity assumes the universal form � ! 3@v2
F

2�k2BT
2 , where

vF is the Fermi velocity of the gas. We will not be con-
cerned with phenomena of the ‘‘x-ray edge’’ type, in which
the impurity is added to or removed from the system, with
the tunneling probability being affected by the orthogonal-
ity catastrophe [5–7].

The natural application of this model is to the dynamics
of holes in doped semiconductor nanowires [8], although
there exists the possibility of using 171Yb as a spin-1=2

impurity in an ultracold quantum gas [9]. A realization of
the two-channel Kondo effect without fine-tuning of pa-
rameters is all the more striking given how elusive this
remarkable phenomenon has proven, succumbing to ex-
perimental observation only last year [10].
In the present problem, this behavior is a consequence of

the restricted scattering processes in one dimension. Low-
energy scattering events near the Fermi surface have mo-
mentum transfers close to a multiple of 2pF, where pF is
the Fermi momentum. Thus for an impurity of mass M
there is a characteristic energy scale Erecoil � 2p2

F=M as-
sociated with a 2pF momentum transfer. At temperatures
kBT � Erecoil such processes are frozen out, and the mo-
tion of the impurity is determined by forward scattering.
Consideration of the kinematics of these forward scat-

tering events shows that processes involving a single fer-
mion are also suppressed. Let us write the dispersion
relation of the fermions as �ðpÞ ¼ p2=2m�� for chemi-
cal potential�, and that of the impurity as �ðpÞ ¼ p2=2M.
Scattering of a fermion with momentum p��pF and low
momentum transfer q leads to a change in energy of �ðpþ
qÞ � �ðpÞ � �vFq. Since the corresponding change in
energy of the impurity is on the order of q2=2M, energy
conservation would require q� 2MvF ¼ 2ðM=mÞpF, or
energies �ðM=mÞ2Erecoil.
These arguments suggest that the low temperature trans-

port of the impurity is due to higher order processes. The
simplest such process involves the scattering of two par-
ticles with momenta lying close to each Fermi point. For
the spinless case we use a model interaction Hint ¼
V
P

i�ðxi � XÞ between the fermions at positions fxig and
the impurity at X. The lowest order amplitude for fermions
with momenta k1 and k2 to scatter to k1 þ q1 and k2 þ q2,
while the impurity momentum goes from K to K � q1 �
q2, is T ð2Þ�ðEi � EfÞ with

T ð2Þ
k1;k2;K!k1þq1;k2þq2;K�q1�q2

¼ i

�
V

L

�
2
�

1

�k1þq1 � �k1 þ �K�q1 � �K
� 1

�k2þq2 � �k1 þ �K�k2�q2þk1 � �K

þ 1

�k2þq2 � �k2 þ �K�q2 � �K
� 1

�k1þq1 � �k2 þ �K�k1�q1þk2 � �K

�
:
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At low q1, q2 the first and third terms give rise to singular
behavior arising from forward scattering processes at sec-
ond order T ð2Þ ! iðVLÞ2 q2�q1

vFq1q2
. Despite this singularity the

momentum relaxation rate of the impurity, given by

��1
mom ¼ 2�

@MT

X
k1;k2;q1;q2

ðq1 þ q2Þ2jT ð2Þj2

� �ðEi � EfÞnk1nk2ð1� nk1þq1Þð1� nk2þq2Þ
(nk is the Fermi distribution), is finite and vanishes as T4,
leading to a low temperature mobility � ¼ �mom=M /
T�4 [11–13]. This calculation, together with the observa-
tion that even an almost opaque impurity will appear
transparent at low temperatures as the backscattering pro-
cesses are suppressed, offers a qualitative picture of be-
havior of the mobility from high to low temperatures in the
spinless case [13].

The validity of these results depended upon our being
able to treat the interaction as weak at low temperatures.
We will now show that when the impurity and the fermions
both have spin-1=2 the most general form of Hint acquires
singular contributions at low energies from higher order
processes. The resulting divergences signal the need for a
radically different description at low temperatures. It is
convenient to use a second quantized representation of
the Hamiltonian (setting @ ¼ kB ¼ 1)

H0 ¼
X
s

Z
dx

�
1

2m
@xa

y
s @xas þ 1

2M
@xb

y
s @xbs

�

Hint ¼
Z

dxV�aðxÞ�bðxÞ þ JSaðxÞ � SbðxÞ:

Here �aðxÞ ¼
P

�a
y
�ðxÞa�ðxÞ and SaðxÞ ¼

1
2

P
�;�0ay�ðxÞ���0a�0 ðxÞ denote the density and spin density

of the fermions, and �bðxÞ and SbðxÞ the corresponding
quantities for the impurity. V and J parametrize the most
general form of rotationally invariant interactions between
the impurity and the fermions. Although it is important for
the problem we discuss that the bare potential interaction V
is sufficiently strongly repulsive to prevent the formation of
a singlet bound state for J > 0, its renormalized strength
tends to zero at low energies as explained above, and we
will neglect it in the following.

Since we have only one b particle, the bare Green
function is Gbð�; pÞ ¼ ½�� �ðpÞ þ i���1 while for the a
particle we have Gað�; pÞ ¼ ½�� �ðpÞ þ i� sgnð�Þ��1.
Two diagrams contribute to the renormalization of J by
second order processes. The effective interaction vertex
(see Fig. 1) has the second order contribution

�ð2Þ
eff ¼�J2

8

X
i;j

½ð	i	jÞ��0 ð	i	jÞ

0Ippð"aþ"b;paþpbÞ

þð	j	iÞ��0 ð	i	jÞ

0Iphð"0a�"b;p
0
a�pbÞ�;

where the first and second terms are the contribution of the
upper and lower diagrams, respectively, in Fig. 1. We have
the explicit expressions

Ipp=phð!;qÞ��i
Z d"

2�

dp

2�
Gað";pÞGbð�!	";�q	pÞ

¼
Z dp

2�

�ð��ðpÞÞ
�ðpÞ��ðq�pÞ�!

: (1)

Note that these have logarithmic singularities Ipp=phð! !
0; q ! �pFÞ ! 	 �

2 lnj ðM�mÞ!
2M� þ � � � j, where the dots de-

note terms of second and higher order in ! and q	 pF,
and � ¼ ma=�pF is the Fermi surface density of states.
The singularities originate in the vanishing of the impurity
dispersion �ðq� pÞ in the denominator in Eq. (1). In
dimension greater than one this occurs only on isolated
points or lines on the Fermi surface, so singularities are
absent from the corresponding integrals. Using the com-
mutation relations of the Pauli matrices, we find that the
amplitude for elastic scattering from the impurity has a
contribution

�ð2Þ
eff �

J2�

8
	i

��0	i


0 ln�=j"j; (2)

where the energy " is measured from the Fermi surface.
Equation (2) represents a singular renormalization of the
coupling J, and a breakdown of the weak coupling picture.
Such a divergence is familiar from the perturbative

treatment of the Kondo problem, which corresponds to
the limit of the present model in which the mass of the
impurity becomes infinite. The appearance of the impurity
dispersion in the denominators of Eq. (1) does not alter the
low-energy singularity at leading order except to remove
the contribution due to backscattering from the impurity,
which is gapped by the energy Erecoil. This leads to Eq. (2)
being smaller by a factor of 2 than in the infinite mass case.
There is, however, a more fundamental difference be-

tween the two cases: the absence of backscattering at low
energies means that the left and right moving fermions
form two distinct channels in which the coupling J be-
comes strong. For infinite mass, by contrast, only the even
fermion modes (defined relative to the position of the

FIG. 1. Second order particle-particle (top) and particle-hole
(bottom) contributions to the effective spin-spin interaction
between the fermions (solid lines) and impurity (dashed lines).
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impurity) are coupled to the impurity, with the odd mode
decoupling entirely, giving a single channel. The low tem-
perature behavior of the two-channel Kondo problem is
completely different from the single-channel case. While
the latter has an effective Fermi liquid description, the
former cannot be described simply in terms of fermionic
quasiparticles carrying charge and spin. The low tempera-
ture mobility of the impurity spin is therefore determined
by a completely different mechanism than an impurity
without spin.

To establish these facts and to describe the physics of
this model beyond simple perturbation theory, it is conve-
nient to pass to a bosonized representation of the fermions.
First we present the Hamiltonian in the mixed form

H ¼ X
s¼";#

Z
dx

1

2m
@xa

y
s @xas þ P2

2M
þ JSaðXÞ � S;

with ½P;X� ¼ �i. Next it is useful to pass to a frame co-
moving with the impurity atom via the transformation
U ¼ eiXPa , where Pa is the total momentum of the a
particles. The effect of this transformation is asðxÞ !
asðx� XÞ, P ! P� Pa, thus eliminating the b coordinate
from the interaction, at the expense of introducing the
momentum of the a particles into the impurity kinetic
energy.

H ¼ X
s¼";#

Z
dx

1

2m
@xa

y
s @xas þ ðP� PaÞ2

2M
þ JSað0Þ � S:

(3)

Note that after this transformation the variable P is con-
served due to the absence of X from the resulting
Hamiltonian, and simply corresponds to the total momen-
tum of the system. We set P ¼ 0 from now on. It is con-
venient to express Eq. (3) in a boson representation where

asðxÞ � R;se
i½pFxþ�R;sðxÞ� þ L;se

�i½pFxþ�L;sðxÞ�, with the

fields �L=R;sðxÞ parametrizing the fluctuating Fermi sea

near the two Fermi points [14]. The anticommuting varia-
bles L=R;s will be discussed shortly; first note that the

anticommutation relations for the aL=R;sðxÞ are reproduced
if we write the mode expansion for �R=L;sðxÞ (taking

periodic boundary conditions on a system of size L)

�R=L;sðxÞ ¼ �ð0Þ
R=L;s þ

2�x

L
NR=L;s

þ X1
n¼1

1ffiffiffi
n

p ðcðnÞR=L;se
�iqnx þ H:c:Þ; (4)

where qn ¼ 2�n=L. The mode operators cðnÞR=L;s and their

conjugates satisfy the canonical Bose commutation rela-

tions, while the zero modes �ð0Þ and NR=L;s satisfy

½�ð0Þ
R=L;s; NR=L;s� ¼ 	i. We therefore have

½�L=R;sðxÞ; @x0�L=R;s0 ðx0Þ� ¼ �2�i�ss0�ðx� x0Þ:

In the following, two technical points are important:
(i) the possibility of nonzero winding �R=L;sðLÞ �
�R=L;sð0Þ ¼ 2�NR=L;s, which describes uniform shifts of

the Fermi points when a particle is added or removed
from the corresponding branch (as occurs in backward
scattering), and (ii) the careful treatment of the operators
p;s that satisfy fp;s; p0;s0 g ¼ 2�pp0�ss0 . The bosonized

Hamiltonian involves only bilinears of these operators. The
operator L;"L;#R;"R;# commutes with all these bilin-

ears, so we may set it equal to �1, which gives relations
between bilinears. e.g.. L;"L;# ¼ 	R;"R;#.
The total Hamiltonian has the form H ¼ HK þHfs þ

Hbs, where the kinetic part HK is

HK ¼ vF

4�

X
p¼R;L
s¼";#

Z
dxð@x�p;sÞ2 þ p2

F

2M

�X
s

NR;s � NL;s

�
2
:

The terms Hfs and Hbs describe the forward scattering and
backward scattering parts of the original interaction. For
the moment we will drop Hbs, reintroducing it later.
Allowing for the possibility of anisotropic couplings, we
have for Hfs

Hfs ¼ J0?
�

½L;"L;#ei�Xð0Þ þ R;"R;#e�i�Xð0Þ�ei�Sð0ÞS�

þ H:c:þ J0k@x�Sð0ÞSz; (5)

where � is a short-distance cutoff and J0? and J0k are the
transverse and longitudinal parts of the spin-spin interac-
tion. Equation (5) is written in terms of the chiral fields

�CðxÞ
�SðxÞ
�FðxÞ
�XðxÞ

0
BBB@

1
CCCA ¼ 1

2

1 �1 1 �1
1 �1 �1 1
1 1 1 1
1 1 �1 �1

0
BBB@

1
CCCA

�L;"ðxÞ
�R"ð�xÞ
�L;#ðxÞ
�R;#ð�xÞ

0
BBB@

1
CCCA:

We can now apply the Emery-Kivelson transformation

UEKHUy
EK with UEK ¼ expðiSz�SÞ [15]. This removes

the e�i�S factors fromHfs, while shifting the kinetic energy
by �vFS

z@x�X. Thus for the special value J0k ¼ vF, the

Hamiltonian takes the form

H ¼ vF

4�

X
p¼C;F;S;X

Z
dxð@x�pÞ2

þ 2iJ0?
�

L;"L;#Sx sin�Xð0Þ þ ErecoilN
2
F: (6)

The impurity term in Eq. (6) can be expressed in terms of a

fermion: sin�X � c X þ c y
X. Although the resulting

Hamiltonian may be solved exactly, we need only observe
that simple scaling implies that the impurity term domi-
nates at low energy, leading to the boundary condition
�Xð0þÞ ¼ ��Xð0�Þ (recall that �X is a chiral field and
satisfies a first order wave equation) [16]. This conclusion
is not altered for J0k different from vF (providing the

interactions remain antiferromagnetic in sign): the perturb-
ing operator Sz@�Xð0Þ is irrelevant at the low-energy fixed
point.
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Although the 2CK boundary condition cannot be under-
stood easily in terms of the fermions, its physical meaning
is simple. It corresponds to the perfect reflection of the spin
mode at the impurity: �L;" ��L#j0� ¼ �R;" ��R#j0� ,
while the density mode propagates unhindered. This dra-
matic manifestation of spin-charge separation in the 2CK
effect also determines the low temperature mobility of the
resulting ‘‘Kondo polaron,’’ as we discuss below.

The crucial difference between the cases of finite and
infinite impurity mass arises from the effect of Hbs, which

after the transformation UEKH
y
bsU

y
EK takes the following

form at the fixed point:

Hbs ! � 2iJ2kF?
�

L;"R;#Sy cos�Fð0Þ:

In the absence of an impurity kinetic energy term this is a
relevant perturbation of dimension 1=2 that leads to the
one-channel Kondo fixed point. Indeed for J0? ¼ J2kF?,
H þHbs can be written in terms of the resonant level
model characteristic of the Toulouse point [17]. The
boundary conditions that result when both J0? and J2kF?
flow to strong coupling are �Xð0þÞ ¼ ��Xð0�Þ and
�Fð0þÞ ¼ ��Fð0�Þ � 2�Sz. This corresponds to
aL;sð0�Þ ¼ �aR;sð0�Þ (accounting for the phase shift in

�S induced by the EK transformation): total reflection of
fermions from the impurity with phase shift �=2 in the
even channel (although this conclusion will be changed by
the inclusion of nonzero potential scattering V).

Hbs changes the value ofNF by�1, however, so that this
breakdown of the 2CK fixed point is prevented for finite
impurity mass due to the recoil energy in Eq. (6). The
effect of backscattering at low energies is described by an
effective Hamiltonian obtained at second order,

Heff ¼ � J22kF;?
E2
recoila

½@x�Fð0Þ�2;

an irrelevant operator of dimension 2.
Although they have no charge, the spin excitations do

carry momentum and exert a force on the impurity. In the
low temperature limit, the recoil of the impurity in this
process can be neglected, so the drag force due to spin
excitations can be found by considering an impurity with
constant velocity. The velocity dependence of the force due
to the ‘‘Doppler shift’’ of the spin excitations gives at
lowest order a dissipative force FT ¼ �ð2PT=v

2
FÞ _X, if

PT is the total incident power, and where vF plays the
role of the speed of light [18,19]. The one-dimensional
version of the Stefan-Boltzman law gives PT ¼ 2ð�T2=6Þ
(the factor of 2 being for the two sides of the impurity),
resulting in a mobility (with all dimensionful constants
restored)

� ! 3@v2
F

2�k2BT
2
; as T ! 0:

Compared to the spinless case we see that the divergence of

the mobility is much slower and furthermore universal,
being a characteristic of the 2CK fixed point rather than
arising from some irrelevant perturbation of nonuniversal
amplitude. At zero temperature the damping force experi-

enced by the impurity is � @

6�v2
F

X
:::
[20].

The influence of the 2CK effect is also apparent in the
spin fluctuations of the impurity, which has imaginary
susceptibility Im�impð!Þ ¼ 1

2 tanhð!=TÞ�=ð!2 þ �2Þ,
with � ¼ J20?=a [15]. At zero temperature the spin fluctu-

ations extend to zero frequency, with an accompanying
logarithmic divergence of the real susceptibility. A finite
magnetic field splitting the degeneracy of the impurity spin
states by a Zeeman energy �Z restores the Fermi liquid
behavior and the T�4 behavior of the mobility at tempera-
tures &�2

Z=� [21].
In conclusion, we have shown that the motion of a

spin-1=2 impurity in a one-dimensional spin-1=2 Fermi
gas provides a realization of the two-channel Kondo effect
without fine-tuning. The unusual nature of the low tem-
perature state formed by the coupling of the impurity and
fermion spins gives rise to universal behavior of the
mobility.
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