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We calculate the baryon magnetic moments using covariant chiral perturbation theory (�PT) within the

extended-on-mass-shell renormalization scheme. By fitting the two available low-energy constants, we

improve the Coleman-Glashow description of the data when we include the leading SU(3)-breaking

effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at

the same order using heavy-baryon �PT and covariant infrared �PT. We also analyze the source of this

improvement with particular attention to the comparison between the covariant results.
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In the limit that SU(3) is an exact flavor symmetry, it is
possible to relate the magnetic moments of the baryon-
octet and the ��0 transition to those of the proton and the
neutron. These are the celebrated Coleman-Glashow for-
mulas [1]. The improvement of this description requires
the inclusion of a realistic SU(3)-breaking mechanism.
Chiral perturbation theory (�PT), as the realization of
nonperturbative QCD at low energies [2–4], should be an
appropriate framework to tackle this problem in a system-
atic fashion. However, it was soon noticed that the leading-
order chiral corrections are large and tend to worsen the
results [5,6]. This problem has often been used to question
the validity of SU(3) �PT in the baryon sector.

In the past decade several calculations in heavy-baryon
(HB) �PT up to next-to-next-to-leading order (NNLO)
have been performed both with [6–8] and without [9] the
inclusion of the baryon decuplet. The large number of low-
energy constants (LECs) appearing at this order reduces
the predictive power of the theory. Additionally, it is also
known that there are substantial relativistic corrections
[10].

The development of covariant �PT has been troubled by
the complications in the power counting introduced by the
baryon mass as a new large scale [3]. Different ways of
solving this problem, such as the infrared (IR) [11] and,
more recently, the extended-on-mass-shell (EOMS) [12]
renormalization schemes, have been explored. In SU(3)
baryon �PT only the self-energies have been studied with
both schemes [13,14]. The baryon-octet magnetic mo-
ments have been calculated using the IR method [15]
and, at next-to-leading order (NLO), the SU(3)-breaking
corrections are still large. Moreover, the agreement with
the data is even worse than in HB�PT. The size of NLO
terms raises the question about the convergence of the
chiral series [7,9,16].

In this Letter we present a covariant calculation of the
baryon-octet magnetic moments atOðp3Þ (NLO) using the
EOMS renormalization technique. In contrast to the pre-
vious works, we find small loop corrections leading to a

considerable improvement over the SU(3)-symmetric de-
scription. We also show the results in HB and covariant IR
�PT, and investigate the origin of the differences.
In �PT, the power counting (PC) provides a systematic

organization of amplitudes as a perturbative expansion in
powers of ðp=��SBÞn�PT , where p is a small momentum or

scale and ��SB the chiral symmetry breaking scale. In the

one-baryon sector, the chiral order of a properly renormal-
ized diagram with L loops, NM (NB) meson (baryon)
propagators, and Vk vertices from kth-order Lagrangians
is n�PT ¼ 4L� 2NM � NB þP

kkVk. In the covariant the-

ory with the modified minimal subtraction (MS) renormal-
ization prescription this rule is violated by lower-order
analytical pieces [12,17].
Different renormalization methods leading to a consis-

tent PC have been developed within dimensional [11,12]
and cutoff [18] regularization schemes. In the following we
focus on the former ones. In particular, the IR scheme [11]
keeps the so-called infrared part of the loop function,
which fulfills the PC and contains the nonanalytic struc-
tures of the full function. The remaining so-called regular
part can be expanded close to the chiral limit in a series of
analytic terms including the PC breaking pieces. They are
then absorbed into the LECs of the most general (and
infinite) chiral Lagrangian. However, the IR formulation
is known to introduce unphysical cuts at large momentum
or meson masses [11,19]. On the other hand, in the EOMS
scheme [12] one subtracts from the full relativistic function
just the PC breaking terms, absorbing them into a finite set
of available lower-order LECs.
Our calculation requires the use of the standard lowest-

order chiral Lagrangians Lð2Þ
� and Lð1Þ

�B, describing the
pseudo-Goldstone bosons and baryons coupled to an ex-
ternal electromagnetic source (e.g., [4]). At second order
there are two terms in the chiral Lagrangian that contribute
to the magnetic moments of the octet baryons,

L ð2Þ
�B¼

bD6
8MB

h �B���fFþ
��;Bgiþ bF6

8MB

h �B���½Fþ
��;B�i; (1)
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where, in our case, Fþ
�� ¼ 2jejQF��, and F�� ¼ @�A� �

@�A� is the electromagnetic strength tensor. The LECs bD6
and bF6 encode information about short-distance physics

and should be determined from experiment within a given
renormalization scheme. We take the values D ¼ 0:80 and
F ¼ 0:46 for the axial and vector meson-baryon couplings

appearing in Lð1Þ
�B and use the physical masses of the

pseudoscalar mesons m� � m�� ¼ 139:57 MeV, mK �
mK� ¼ 493:68 MeV, and m� ¼ 547:5 MeV. For the

baryon mass we take a value of MB ¼ 940 MeV, so that
the magnetic moments come expressed directly in nuclear
magnetons. A moderate variation of MB is investigated
below. As for the meson-decay constant in the chiral limit
F0, we choose an average between the physical values
F� ¼ 92:4 MeV, FK ¼ 1:22F�, and F� ¼ 1:3F�.

Namely, F0 � F� ¼ 1:17F�. The leading SU(3)-breaking

corrections to the masses of the baryons in the octet and to
the meson-decay constants contribute to the magnetic mo-
ments at higher orders.

The Feynman diagrams for the anomalous magnetic
moments up to Oðp3Þ are shown in Fig. 1. The tree-level
coupling [1(a)] is given by the Lagrangian (1), and carries
the leading-order result

	ð2Þ
B ¼ 
Bb

D
6 þ �Bb

F
6 ; (2)

where the coefficients 
B and�B for each of the baryons in
the octet are listed in Table I. This lowest-order contribu-
tion is nothing other than the SU(3)-symmetric prediction
leading to the Coleman-Glashow relations [1,6].

The Oðp3Þ diagrams [1(b) and 1(c)] account for the
leading SU(3)-breaking corrections that are induced by
the corresponding breaking in the masses of the pseudo-
scalar meson octet. Their contributions to the anomalous
magnetic moment of a given member of the octet B can be
written as

	ð3Þ
B ¼ 1

8�2F2
�

� X
M¼�;K

�ðbÞ
BMH

ðbÞðmMÞ

þ X
M¼�;K;�

�ðcÞ
BMH

ðcÞðmMÞ
�
; (3)

with the coefficients �ðb;cÞ
BM listed in Table I. The loop

functions read

HðbÞðmÞ ¼ �M2
B þ 2m2 þ m2

M2
B

ð2M2
B �m2Þ log

�
m2

M2
B

�

þ 2mðm4 � 4m2M2
B þ 2M4

BÞ
M2

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

B �m2
q arccos

�
m

2MB

�
;

HðcÞðmÞ ¼ M2
B þ 2m2 þ m2

M2
B

ðM2
B �m2Þ log

�
m2

M2
B

�

þ 2m3ðm2 � 3M2
BÞ

M2
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

B �m2
q arccos

�
m

2MB

�
: (4)

These loop integrals are convergent and do not depend on a
renormalization scale. For the case of the proton and
neutron this result coincides with the one obtained using
a linearized form of the Gerasimov-Drell-Hearn sum rule
[20]. One also notices that they contain pieces �M2

B that
contribute atOðp2Þ to the magnetic moments, breaking the
PC.
In order to get rid of the PC problems we follow the

EOMS scheme, by which these pieces are absorbed into the
available counterterms, bD6 and bF6 . This is equivalent to

redefining these two LECs as

~bD
6 ¼ bD6 þ 3DFM2

B

2�2F2
�

; ~bF6 ¼ bF6 ;

so that

~H ðbÞ ¼ HðbÞ þM2
B; ~HðcÞ ¼ HðcÞ �M2

B: (5)

B B B B’ BB’ B’

M MM

γγ

B

γ

(c)(a) (b)

B

FIG. 1. Feynman diagrams contributing to the baryon anoma-
lous magnetic moment. The solid lines correspond to baryons,
dashed lines to mesons, and the wiggly line denotes the external
photon field. Black dots and white dots indicate OðpÞ and Oðp2Þ
couplings, respectively.

TABLE I. Coefficients of the tree-level [Eq. (2)] and loop contributions [Eq. (3)] to the magnetic moments of the octet baryons.

p n � �� �þ �0 �� �0 ��0


B
1
3 � 2

3 � 1
3

1
3

1
3

1
3

1
3 � 2

3
1ffiffi
3

p

�B 1 0 0 �1 1 0 �1 0 0

�ðbÞ
B� �ðDþ FÞ2 ðDþ FÞ2 0 2

3 ðD2 þ 3F2Þ � 2
3 ðD2 þ 3F2Þ 0 ðD� FÞ2 �ðD� FÞ2 � 4ffiffi

3
p DF

�ðbÞ
BK � 2

3 ðD2 þ 3F2Þ �ðD� FÞ2 2DF ðD� FÞ2 �ðDþ FÞ2 �2DF 2
3 ðD2 þ 3F2Þ ðDþ FÞ2 � 2ffiffi

3
p DF

�ðcÞ
B� � 1

2 ðDþ FÞ2 �ðDþ FÞ2 0 2F2 �2F2 0 1
2 ðD� FÞ2 ðD� FÞ2 4ffiffi

3
p DF

�ðcÞ
BK �ðD� FÞ2 ðD� FÞ2 �2DF ðDþ FÞ2 �ðD� FÞ2 2DF ðDþ FÞ2 �ðDþ FÞ2 2ffiffi

3
p DF

�ðcÞ
B� � 1

6 ðD� 3FÞ2 0 0 2
3D

2 � 2
3D

2 0 1
6 ðDþ 3FÞ2 0 0
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In this way, we have obtained the leading one-loop rela-
tivistic contribution to the magnetic moments starting from
Oðp3Þ. Furthermore, one is able to recover the leading
nonanalytical quantum correction in the HB formalism
by setting MB ���SB

~H ðbÞðmÞ ’ �mMB þOðp2Þ; ~HðcÞðmÞ ’ Oðp2Þ: (6)

When added to the tree-level terms, this result completes
the Oðp3Þ estimation of the baryon magnetic moments in
the HB�PT approach [6,9].

The IR amplitudes have been calculated in Ref. [15].
They can be obtained subtracting from the full loop func-
tions (4) the corresponding regular parts, which can be
expressed around the chiral limit as

RðbÞðmÞ ¼ �M2
B þ 19m4

6M2
B

� 2m6

5M4
B

þ � � � ;

RðcÞðmÞ ¼ M2
B þ 2m2 þ 5m4

2M2
B

� m6

2M4
B

þ � � � :
(7)

On the other hand, the regular parts have unphysical cuts at
m ¼ 2MB. In short, in order to recover the PC, the IR
formulation alters the analytical structure of the full rela-
tivistic theory [20] such that the applications of this scheme
for large meson masses (physical or unphysical) may
become questionable [19]. Nevertheless, since the differ-
ences between the full relativistic and IR results (or those
obtained in any other consistent scheme) are analytical in
quark mass, they should be reconciled with the adjustment
of higher-order counterterms.

In Table II we show the numerical results for the baryon
magnetic moments obtained by minimizing ~�2 ¼Pð�th ��exptÞ2 as a function of ~bD6 and ~bF6 . The ��0

transition moment is not included in the fit, but it is a
prediction to be confronted with the experimental value.
Moreover, we compare the tree-level result with theOðp3Þ
loop results given by the three different �PT approaches
discussed above, namely, the semirelativistic HB Eq. (6)
and the covariant Eq. (4), within the EOMS Eq. (5) or the
IR Eq. (7) renormalization schemes [21]. The experimental
values of the magnetic moments are also displayed for
comparison.

The HB results show the long-standing problem of the
poor convergence of �PT for the baryon magnetic mo-
ments. The leading nonanalytical correction to the SU(3)-
symmetric prediction amounts up to 80% of the leading
contribution for some of the baryons. In this approach, it is
necessary to come up to Oðp4Þ to achieve reasonable
convergence, although the role of the loop contributions
is not clear in a scenario where one has the same number of
parameters as of experimental values to fit [7]. One expects
that the covariant theory, with the proper higher-order
chiral terms, should overcome the problem of convergence.
However, the IR results are even worse than those obtained
in HB. In particular, the quantum correction to the ��
magnetic moment is 3 times bigger than the leading-order
one. The inclusion of NNLO is then required to achieve a
successful description [15].
The EOMS results presented in this work show an un-

precedented NLO improvement over the tree-level descrip-
tion within dimensionally regularized �PT. Indeed, the ~�2

in this approach is much better than those obtained with
HB and IR. Moreover, it is also better than the tree-level
SU(3)-symmetric description. The convergence of the chi-
ral expansion in our case can be accessed by separating the
Oðp2Þ from the Oðp3Þ contributions for each magnetic
moment (in units of nuclear magnetons)

�p ¼ 3:47ð1� 0:257Þ; �n ¼ �2:55ð1� 0:175Þ;
�� ¼ �1:27ð1� 0:482Þ; ��� ¼ �0:93ð1þ 0:187Þ;
��þ ¼ 3:47ð1� 0:300Þ; ��0 ¼ 1:27ð1� 0:482Þ;

��� ¼ �0:93ð1þ 0:025Þ;
��0 ¼ �2:55ð1� 0:501Þ; ���0 ¼ 2:21ð1� 0:284Þ:
In dramatic contrast with the HB [9] and IR results [15], we
find that the NLO term represents, at most, half of the
leading contribution. This is consistent with the expected
maximal correction of about m�=��SB. Remarkably, we

obtain a value for ���0 very close to the experimental one
assuming a positive sign.
In order to understand the differences between the three

�PT formulations, we study the evolution of the minimal
~�2 as we switch on the SU(3)-breaking effects, by intro-

TABLE II. Numerical results of the fits of ~bD6 and ~bF6 to the experimental values of baryon-octet magnetic moments up to Oðp3Þ in
different �PT approaches. The experimental values with the corresponding errors are also displayed in the last row. All the values for
the magnetic moments are expressed in units of nuclear magnetons, while ~bD6 and ~bF6 are dimensionless.

p n � �� �þ �0 �� �0 ��0 ~bD6
~bF6 ~�2

Oðp2Þ
Tree level 2.56 �1:60 �0:80 �0:97 2.56 0.80 �1:60 �0:97 1.38 2.40 0.77 0.46

Oðp3Þ
HB 3.01 �2:62 �0:42 �1:35 2.18 0.42 �0:70 �0:52 1.68 4.71 2.48 1.01

IR 2.08 �2:74 �0:64 �1:13 2.41 0.64 �1:17 �1:45 1.89 4.81 0.012 1.86

EOMS 2.58 �2:10 �0:66 �1:10 2.43 0.66 �0:95 �1:27 1.58 3.82 1.20 0.18

Expt. 2.793(0) �1:913ð0Þ �0:613ð4Þ �1:160ð25Þ 2.458(10) � � � �0:651ð3Þ �1:250ð14Þ �1:61ð8Þ � � �
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ducing the parameter x ¼ mM=mM;phys (where M ¼
�;K; �) and varying it between zero and one. As seen in
Fig. 2, the three approaches coincide in the vicinity of the
chiral limit. The EOMS and IR results stay very close up to
x� 0:4. As x increases further HB and IR description of
data gets worse while, to the contrary, the EOMS result lies
well below the SU(3)-symmetric one. Following the analy-
sis of Ref. [20], we interpret the unrealistic IR behavior as a
manifestation of the change of the analytical structure of
the theory made in this formulation. Certainly, this is due to
the fact that in SU(3) �PT one has to deal with K and �
mesons which have masses larger than 350 MeV, the limit
deemed acceptable for meson masses in one-loop SU(2)
�PT calculations [19].

We have also studied the uncertainties of our results to
the particular value chosen forMB. The shaded areas in the
plot are produced by varying MB in the interval of 0:8 �
MB � 1:1 GeV. While in HB the result is independent of
the value of this parameter and IR manifests a clear sensi-
tivity to it (the fit being worse for larger m=MB ratios), the
EOMS result presents an intriguing insensitivity toMB (the
shaded area lies within the thickness of the solid curve in
Fig. 2). As pointed out in Ref. [20], this feature, as well as
the soft dependence on the SU(3)-breaking exhibited by
the EOMS curve, is due to subtle cancellations encoded
into the full relativistic results.

In summary, we have improved the SU(3)-symmetric
description of the baryon-octet magnetic moments by in-
cluding the leading quantum effects provided by relativis-
tic �PT within the EOMS scheme. In addition to the
relativistic corrections, analyticity has proved to be of
fundamental importance. Indeed, the effect of the unphys-
ical cuts embedded into the IR loops containing K and �
mesons shows to be sizable. In addition to the first suc-

cessful description of baryon-octet magnetic moments at
NLO, this work contributes to clarification of the long-
standing puzzle regarding the applicability of baryon �PT
in the SU(3)-flavor case. A careful study of different
SU(3)-flavor observables is required in order to establish
to what extent the improved convergence of EOMS with
respect to IR found in this work is a general feature.
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FIG. 2 (color online). SU(3)-breaking evolution (see text for
details) of the minimal ~�2 in the Oðp3Þ �PT approaches under
study. We also show the shaded areas produced by the uncer-
tainty in MB when varying from 0.8 to 1.1 GeV. This effect lies
within the line thickness in the EOMS case, while the HB is
insensitive to it.
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