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We consider microwave hyperfine transitions in the ground state of cesium and rubidium atoms which

are presently used as the primary and the secondary frequency standards. The atoms are confined in an

optical lattice generated by a circularly polarized laser field. We demonstrate that applying an external

magnetic field with appropriately chosen direction may cancel dynamic Stark frequency shift making the

frequency of the clock transition insensitive to the strengths of both the laser and the magnetic fields. This

can be attained for practically any laser frequency which is sufficiently distant from a resonance.
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The microwave transition between Cs hyperfine levels is
used to define the second, the unit of time. The best
accuracy of the Cs standard is now achieved in a fountain
clock [1,2]. For optical clocks with neutral atoms the best
results are obtained using optical lattices where atoms are
trapped in minima (or maxima) of a laser standing wave
[3–7]. Here a laser producing an optical lattice operates at a
‘‘magic frequency’’ where the light shift of the clock
transition is zero (due to cancellation of the light shifts of
the lower and upper clock levels). To extend this successful
technique to microwave frequencies one must firstly check
if the magic frequencies exist for such transitions. In our
recent work [8] we found the magic frequencies for alu-
minum and gallium hyperfine transitions where the valence
electron is in the p1=2 state (the magic frequency there is a

result of mixing of the p1=2 and p3=2 states by the hyperfine

interaction—see details in [8]). However, we have not
found any magic frequencies for Cs, Rb and other atoms
with the s1=2 electron in the ground state. In Ref. [8], we

considered the case of the linear polarization of the lattice
laser light. In the present Letter we show that the cancella-
tion of the light shifts for Cs, Rb and other atoms with s1=2
(or p1=2) electron exist if (1) the laser light in optical lattice

has a circular (or elliptical) polarization, and (2) the angle
� between the quantizing magnetic field B and the light
wave vector k is close to 90�.

By varying � one can achieve the cancellation of the
light shifts for any frequency !, i.e., any frequency can be
‘‘magic’’. Numerical calculation of �ð!Þ has been per-
formed for the cesium and rubidium microwave frequency
standards.

Hyperfine clock transitions in magnetic field.—Let us
start from the case of no magnetic field. The light shift of
an individual atomic energy level in a circularly polarized
laser field is given by (see, e.g., [9])
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Here E is the amplitude of the laser field, F ¼ Iþ J; I is
the nuclear spin; J is the total electron momentum; MF is
projection of F on the quantization axis; �s, �a and �T are
the scalar, vector (axial) and tensor polarizabilities of an
atom. The quantization axis here is along the propagation
of the laser light and A is the degree of the circular
polarization (A ¼ 1 for the right-hand and A ¼ �1 for
the left-hand polarizations).
In the presence of a sufficiently large magnetic field the

direction of the quantization axis is along the magnetic
field. In this case the shift depends on the angle � between
the magnetic field B and the direction of light propagation
determined by the wave vector k. This gives an additional
factor cos� in the vector polarizability contribution [the
central term in (1)]. The tensor contribution [the last term
in (1)] is multiplied by a factor �ð�;�Þ which depends on
orientations of the B field and polarization; for the circular
polarization �ð�Þ ¼ ð3cos2�� 1Þ=2.

�Ecirc
nFMF

¼ �
�
1

2
E
�
2
�
�s
nFð!Þ þ ðcos�ÞA�a

nFð!ÞMF

2F

� �ð�;�Þ�T
nFð!Þ 3M

2
F � FðFþ 1Þ
2Fð2F� 1Þ

�
: (2)

The effect of the laser field on the frequency of a micro-
wave clock transition can be found by using (2) for both
levels and taking the difference. We are interested in cases
when this difference is zero, so that the frequency is
insensitive to the laser field.
The relevant clock shift of a transition between hyper-

fine levels arises in the second (quadratic in laser field) and
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the third order of perturbation theory (quadratic in laser
fieldþ linear in hyperfine interaction). In the case of Al
and Ga hyperfine-structure (hfs) transitions in the p1=2

ground states considered in Ref. [8], the zero frequency
shift is due to cancellation between scalar and tensor hfs-
induced polarizabilities. Clock states with MF ¼ 0 were
considered so that the vector part did not contribute. The
tensor polarizabilities of atoms in the p states are strongly
enhanced due to small value of the fine structure interval
between the p1=2 and p3=2 states which goes to the energy

denominator of the tensor polarizability (produced by the
mixing of p1=2 and p3=2 states by the hyperfine interac-

tion). There is no such enhancement for cesium and other
microwave frequency standards based on atoms with the
s1=2 ground state. As a consequence, there are no magic

frequencies if the vector term plays no role. This was
discussed in Ref. [8].

Note, however, that the contributions of the scalar and
tensor polarizabilities to the frequency shifts in the s1=2 and
p1=2 hyperfine transitions are proportional to the hyperfine

interaction and appear in the third order of the perturbation
theory while the vector polarizability contribution exists
even without the hyperfine interaction, so it appears in the
lower (second) order of the perturbation theory. This means
that for A cos�� 1 the vector contribution is orders of
magnitude larger. Therefore, by varying angle � (or degree
of the circular polarization A) we can always find some
small value of the factor A cos� in the vector contribution
to cancel the small scalar and tensor contributions and
make the total light shift of the hyperfine frequency zero.
(The second-order scalar light shift is identical for both
clock levels and does not contribute to the clock shift.)

Consider, for example, a transition between hfs compo-
nents which have different total angular momenta F and
the same projection MF. As seen from (2), the frequency
shift for such a transition can be turned to zero practically
for any frequency of laser field by controlling the orienta-
tion of the external magnetic field. This magic direction is
given by
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Here we neglect the tensor term which is small for cesium.
The numerator of (3) is due to the third-order (second in the
laser field and first in the hfs) scalar polarizabilities.
Second-order polarizabilities (without the hfs) do not con-
tribute to the energy difference because they do not depend
on F. By contrast, the denominator is strongly dominated
by the second-order vector polarizabilities. The formulas
for second and third-order polarizabilities can be found
below and in Refs. [9–11].

Because of the extra hfs operator in the numerator of (3)
cosð�Þ is small which means that the magnetic field is
directed almost perpendicular to the propagation of the
laser light. Figure 1 shows the results of calculations for

the clock transition in cesium between hfs states of F1 ¼ 3
and F2 ¼ 4 with MF ¼ 3 in both cases. The results for
cosð�Þ show complicated behavior in the vicinity of the
6s-np1=2 and 6s-np3=2 resonances. The first two 6s-6p1=2

and 6s-6p3=2 resonances are included in Fig. 1. For all

frequencies sufficiently distant from resonances cosð�Þ is a
smooth function of the frequency of laser field. The angle �
which makes the frequency to be magic is always close to
90�. As ! ! 0, cos�ð!Þ / 1=!, and the angle changes
rapidly at small frequencies which may be advantageous.
Indeed, the rapid change of � means that the magic fre-
quency is less sensitive to uncertainties in �. Two close
dotted vertical lines on Fig. 1 show frequencies of the CO2

laser (!L ¼ 0:43 a:u: and !L ¼ 0:48 a:u:) which fell into
this region. Corresponding values of � are � ¼ 90:62� and
� ¼ 90:55�.
Figure 2 shows the results of similar calculations for the

F ¼ 1, MF ¼ 1 to F ¼ 2, MF ¼ 1 hfs transition in the
ground 5s1=2 state of

87Rb. All notations are the same as for

Fig. 1. Magic angles for the frequencies of the CO2 laser
are � ¼ 91:77� and � ¼ 91:57�.
As usual, the linear Zeeman shift may be eliminated if

we average the frequencies of the hyperfine transitions
with the opposite sign of MF, for example MF ¼ 3 and
MF ¼ �3. However, to keep the cancellation of light shifts
in place, we must have the same value of the products
AMF cos� in both transitions. This may be achieved by the
simultaneous change of signs of MF and circular polariza-
tion A.

FIG. 1. Calculated cosð�Þ for 133Cs, where � is the angle
between magnetic field and the light propagation which makes
the laser frequency to be magic. Vertical lines correspond to
frequencies of the CW CO2 laser.
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Another solution for eliminating the linear Zeeman shift
is employing the hyperfine components with MF1

¼
�MF2

. The equation for the magic angle would be similar

to Eq. (3), except the difference of the vector polarizabil-
ities in the denominator would be replaced by their sum.

A more accurate treatment of the effects of the B field
requires simultaneous consideration of the magnetic inter-
action and vector light shift. The latter is equivalent to a
‘‘pseudomagnetic’’ field directed along the light wave
vector k. The effective Hamiltonian may be presented in
the following form:

H ¼ �F �Q
F

; (4)

where

Q ¼ �FBþ Vnk;

and
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�
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�
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:

Here nk ¼ k=k is the unit vector along k and �F is the
magnetic moment of the hyperfine component F. The
energy levels of this Hamiltonian are given by

E ¼ �MFQ

F
; (5)

where

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�FBÞ2 þ 2V�FB cos�þ V2

q
� �FBþ V cos�þ V2=ð2�FBÞ þ � � � :

A new feature here is the quadratic vector term which
should be subtracted from the result of measurements to
find an accurate value of the hyperfine transition frequency.
Note that in an optical lattice one actually has a standing

wave. In this case it is appropriate to talk about the direc-
tion of the photon spin Sph ¼ Ank (or the direction of

rotation of the light electric field) instead of the direction
of the wave vector nk ¼ k=k. Indeed, to have the needed
standing wave, in the reflected wave both nk and A change
sign while Sph ¼ Ank and the direction of rotation of the

light electric field are the same.
Calculation of polarizabilities.—The second-order dy-

namic vector polarizability is given by
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The third-order AC Stark shift (involving two light fields
and hfs) is given by the frequency-dependent generaliza-
tion of the DC Stark shift presented previously in
Refs. [10–12] in the context of the black-body radiation
clock shift. The structure of the resulting expressions is
presented in Ref. [8]. Explicit formulas are lengthy and
will be presented elsewhere.
To perform the calculations we follow the procedure

described in detail in our previous work [11]. We use
ab initio relativistic Hartree-Fock method in the frozen-
core approximation to construct an effective single-

electron Hamiltonian Ĥ0. Then an all-order correlation

potential �̂
ð1Þ

[13] is used to build a complete set of
single-electron basis states. These states are the eigenstates

of the Ĥ0 þ �̂
ð1Þ

Hamiltonian and are usually referred to

as the Brueckner orbitals. Because of the �̂
ð1Þ

operator
they include the dominant polarization interaction between
core and valence electrons. This approach gives fraction of
a per cent accuracy for the energies of valence states. To
calculate matrix elements of the electric dipole and hyper-
fine interactions we also include the effect of core polar-
ization by external field. This is done by means of the time-
dependent Hartree-Fock method [14], which is equivalent
to the well-known random-phase approximation. The re-
sulting accuracy for the polarizabilities is about 1% (see
Ref. [11] for detailed discussion).
Conclusion.—We conclude that microwave clocks (Cs,

Rb, . . .) using specially engineered magic optical lattices
may be an interesting alternative to the fountain clocks. We
have shown that, in principle, the light shift and the linear
Zeeman shift may be eliminated. The atoms in the lattice
are confined to a tiny volume. This may help in solving
such problems as a homogeneity of magnetic field and

FIG. 2. Calculated cosð�Þ for 87Rb.
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cooling the chamber to reduce the thermal black-body
radiation shift. However, the expected accuracy of the
optical-lattice microwave clocks is yet to be explored.
This problem deserves further theoretical and experimental
investigation. Even if the precision of such clocks turns out
be less competitive than that of the fountains, the micro-
wave lattice clocks have a clear advantage of a smaller
apparatus size. This may be important for many applica-
tions, e.g., for the spacecraft applications including navi-
gation systems and precision tests of fundamental
symmetries in space.
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