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We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than

Shor’s algorithm. We implement the algorithm in a NMR quantum information processor and experi-

mentally factorize the number 21. In the range that our classical computer could simulate, the quantum

adiabatic algorithm works well, providing evidence that the running time of this algorithm scales

polynomially with the problem size.
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Using quantum mechanical systems as computational
devices may be a possible way to build computers that
are qualitatively more powerful than classical computers
[1]. The algorithms that are adapted to the special capa-
bilities of these devices are called quantum algorithms.
One of the best known quantum algorithms is Shor’s
algorithm for integer factorization [2]. Since no efficient
factorization algorithm is known for classical computers
[3], various cryptographic techniques rely on the difficulty
of finding the prime factors of large numbers [4]. However,
in 1994, Peter Shor developed a quantum algorithm that
can factorize large numbers in polynomial time [2]. This
discovery was one of the main reasons for the subsequent
strong interest in quantum computation. An experimental
implementation of Shor’s algorithm was demonstrated by
Vandersypen et al. [5], using nuclear spins as qubits to find
the prime factors of 15. More recent experiments by Lu
et al. [6] and Lanyon et al. [7] used photons as qubits and
found the same factors.

While Shor’s algorithm and its experimental implemen-
tation are based on the circuit (or network) model of
quantum computation, an alternative computational model
has been proposed by Farhi et al. [8]. This model is based
on the quantum adiabatic theorem: a quantum system
remains in its instantaneous eigenstate if the system
Hamiltonian varies slowly enough and if there is a gap
between this eigenvalue and the rest of the Hamiltonian’s
spectrum [9]. It has been proved that this adiabatic model
of quantum computing is equivalent to the conventional
circuit model [10]. Several adiabatic quantum algorithms
have been discussed theoretically and experimentally, such
as 3SAT [8,11,12] and search of unstructured databases
[13]. Moreover, since the adiabatic scheme only involves
the ground state, (as long as the system is kept at low
temperature), it appears to offer lower sensitivity to some
perturbations and thus improved robustness against errors
due to dephasing, environmental noise and some unitary
control errors [14]. Therefore, adiabatic quantum compu-
tation has recently attracted extensive interest. Here we

first apply the adiabatic method to the problem of integer
factorization.
A large number of the computationally hard problems

can be formulated as optimization problems. The quantum
adiabatic evolution provides an attractive approach to solve
this kind of problems. It requires a problem Hamiltonian
HP to describe the problem, whose ground state encodes
the answer. Classically, finding the ground state of a
Hamiltonian is a computationally hard problem.
Adiabatic evolution gives a natural method to find the
ground states. Suppose a quantum system starts with an
initial Hamiltonian H0, whose ground state c gð0Þ is

known. Then if a time-dependent Hamiltonian HðtÞ of
the system varies slowly enough to fulfill the adiabatic
condition, the evolving quantum state c ðtÞ will remain
close to the instantaneous ground state c gðtÞ of HðtÞ. We

takeHðTÞ ¼ HP at a time T, which means the ground state
c gðTÞ encodes the solution of the optimization problem.

The change of the Hamiltonian is realized by an interpo-
lation scheme

HðtÞ ¼ ½1� sðtÞ�H0 þ sðtÞHP; (1)

where the function sðtÞ varies from 0 to 1 to parametrize the
interpolation. The solution of the optimization problem is
then determined by measuring the final ground state c gðTÞ
of HP.
We now apply this approach to find nontrivial prime

factors of an ‘-bit integer N ¼ p� q where p and q are
prime numbers. We can write the factorization problem as
an optimization problem by using the function fðx; yÞ ¼
ðN � xyÞ2, in which the variables x and y are positive
integers. Clearly, the minimum of this function is reached
when x and y are the factors of N.
To solve this optimization problem by the adiabatic

quantum algorithm, we must construct a problem
Hamiltonian for the function fðx; yÞ, whose ground state
is the solution. Generally, the eigenvalues of the problem
Hamiltonian are fðx; yÞ, and the corresponding eigenvec-
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tors jxi and jyi represent the variables x and y. These
conditions are satisfied by HP ¼ P

x;yfðx; yÞjx; yihx; yj.
To determine the Hilbert space that we need for imple-

menting this scheme, we first consider the range of the
variables x and y. Without loss of generality, we assume
thatN is odd (in case of evenN, we could repeatedly divide
N by 2 until an odd integer is obtained). Since N is odd, its
factors x and ymust also be odd; i.e., its last bit is always 1
and can therefore be omitted from the computation.

Without loss of generality, we choose x < y and 3 � x �ffiffiffiffi
N

p
,

ffiffiffiffi
N

p � y � N
3 . It is then easy to prove that nx ¼

mðb ffiffiffiffi
N

p coÞ � 1 � b‘þ1
2 c � 1 bits are sufficient to represent

x and ny ¼ mðbN3 cÞ � 1 � ‘� 2 bits to represent y, where

bac (baco) denotes the largest (odd) integer not larger than a,
whilemðbÞ denotes the smallest number of bits required for
representing b. The total number of qubits required is then

n ¼ nx þ ny � b‘þ1
2 c þ ‘� 3�Oð3l=2Þ, which is less

than the number of qubits used in Shor’s algorithm, 2‘þ
1þ dlogð2þ 1

2"Þe �Oð2lÞ, where " is the failure probabil-

ity and dce denotes the smallest integer not less than c [2].
Obviously, at least 25% of qubits are saved in our present
adiabatic algorithm.

Using the conventional computational basis fj0i; j1ig ¼
fj "i; j #ig, it is straightforward to construct the problem
Hamiltonian:

HP ¼
�

NI �
�

2nx�1 I � �1
z

2
þ � � � þ 21

I � �nx�1
z

2
þ I

�

�
�

2ny�1 I� �nx
z

2
þ � � � þ 21

I � �n
z

2
þ I

��
2
; (2)

where I represents the unit operator and �i
z is the Pauli

matrix of qubit i.
All computational basis states jz1z2 . . . zni, with zi ¼ 0

or 1, are eigenstates of HP and the corresponding eigen-
values are ðN � xyÞ2, in which x and y are represented by
the bits z1 . . . znx and znxþ1 . . . zn, respectively. The lowest

eigenvalue of HP is 0, and the corresponding eigenstate
(i.e., the ground state) jp0ijq0i encodes the factors p ¼
2p0 þ 1 and q ¼ 2q0 þ 1.

As the initial Hamiltonian, we choose

Hð0Þ ¼ gð�1
x þ �2

x þ � � � þ �n
xÞ: (3)

This Hamiltonian describes a system, in which all the spins
interact with the same magnetic field with strength g,
oriented along the x axis. Its ground state is

jc gð0Þi ¼
�j0i � j1i

ffiffiffi
2

p
��n ¼ 1

ffiffiffiffiffi
2n

p X2n�1

j¼0

ð�1ÞbðjÞjji; (4)

where bðjÞ is the parity of j [i.e., the number of 1 s in the
binary representation mod 2]. The initial state is thus an
equal superposition of all computational basis states, each
representing a combination of trial factors x and y.

In the adiabatic process, the system evolves under the
time-dependent Hamiltonian (1) according to the

Schrödinger equation:

i
d

dt
jc ðtÞi ¼ HðtÞjc ðtÞi; (5)

with the initial condition jc ð0Þi ¼ jc gð0Þi. The adiabatic
theorem [9] ensures that, if the evolution time T is long
enough, the quantum system will always be close to the
ground state of HðtÞ, and the final state will be the solution
of the problem.
As an example, we apply this algorithm to the factoriza-

tion of 21. The number of qubits required to represent the

two registers x and y is nx ¼ mðb ffiffiffiffiffiffi
21

p coÞ � 1 ¼ 1, ny ¼
mðb213 cÞ � 1 ¼ 2. Hence, the total number of qubits needed

is n ¼ 3. According to Eq. (2), the problemHamiltonian is:

HP ¼ 210I þ 84�1
z þ 88�2

z þ 44�3
z � 20�1

z�
2
z

� 10�1
z�

3
z þ 20�2

z�
3
z � 16�1

z�
2
z�

3
z : (6)

Its energy-level diagram is shown in Fig. 1(a) where we
used sðtÞ ¼ ðt=TÞ2 to interpolate the Hamiltonian (1), a
total evolution time T ¼ 0:168 and g ¼ 30. Under these
conditions, the adiabatic condition is satisfied as the system
evolves towards the desired final state at t ¼ T. The blue

FIG. 1 (color online). (a) Energy-level diagram for the adia-
batic factorization of N ¼ 21 when sðtÞ ¼ ðt=TÞ2 and T ¼
0:168. (b) Occupation probabilities for the computational basis
states jz1z2z3i for the theoretical simulation [denoted by blue
(light gray) bars] and experimentally reconstructed populations
of the computational basis states afterm evolution steps [denoted
by red (dark gray) bars]. (c) Measured spectra of 13C for each
adiabatic step. The four resonance lines of 13C are labeled by the
corresponding states of the two other qubits. The spectra were
adjusted as absorption spectra by 180� phase correction, which
leads to positive amplitude indicating the j1i subspace of the 13C
qubit. A color scale indicates peak intensities, which are in
arbitrary units. The system starts in an equal weight superposi-
tion and evolves to the desired final state j111i, which encodes
the solution p ¼ 3, q ¼ 7.
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(light gray) bars in Fig. 1(b) show the numerical simulation
for the evolution of the occupation probabilities of the
computational basis states jz1z2z3i when the whole adia-
batic evolution is divided into 6 equidistant steps. The
ground state of the problem Hamiltonian, j111i encodes
the value of x in the first bit, so p ¼ 2z1 þ 1 ¼ 3, and the
value of y in the second and third bits, q ¼ 4z2 þ 2z3 þ
1 ¼ 7.

Now we turn to the real physical system (a three-qubit
NMR quantum processor) to demonstrate this algorithm.
The three qubits are represented by the 1H, 13C, and 19F
nuclear spins of Diethyl-fluoromalonate. The molecular
structure is shown in Fig. 2(a), where the three nuclei
used as qubits are marked by the oval. The natural
Hamiltonian of the three-qubit system in the rotating frame
is

H NMR ¼ X3

i¼1

!i

2
�i

z þ
X3

i<j;¼1

�Jij
2

�i
z�

j
z; (9)

where !i represent the field strengths and Jij the coupling

constants JHC ¼ 161:3 Hz, JCF ¼ �192:2 Hz and JHC ¼
47:6 Hz. The experiments were carried out at room tem-
perature, using a Bruker Avance II 500 MHz (11.7 Tesla)
spectrometer equipped with a QXI probe with pulsed field
gradient.
The experiment was divided into three steps [Fig. 2(b)]:

initial state preparation into the ground state of Hð0Þ,
adiabatic passage for the time-dependent HðtÞ, and mea-
surement of the final ground state of HðTÞ. Starting from
thermal equilibrium, we first created a pseudopure state
[15] �000 ¼ 1��

8 1þ �j000ih000j, with 1 representing the

8� 8 unity operator and � 	 10�5 the polarization. The
ground state of Hð0Þ [Eq. (4)] was prepared from �000 by
applying �=2 pulses along the �y axis to each qubit.
The adiabatic evolution of HðtÞ was approximated by

Mþ 1 discrete steps [11,16]. Instead of the usual linear
interpolation sðtÞ ¼ t=T, we used a polynomial interpola-
tion, sm ¼ ðm=MÞr, with r integer and 0 � m � M. The
unitary evolution for the discrete adiabatic passage is then
U ¼ Q

M
m¼0 Um ¼ Q

M
m¼0 e

�iHm�, where the duration of

each step is � ¼ T=ðMþ 1Þ. The adiabatic limit is
achieved when both T, M ! 1 and � ! 0. Using
Trotter’s formula, we can approximately generate the uni-
tary operators

Um 	 e�iH0ð1�smÞð�=2Þe�iHPsm�e�iH0ð1�smÞð�=2Þ þOð�3Þ:
The pulse sequence for the implementation of the adiabatic
evolution is shown in Fig. 2(c). As a suitable set of pa-
rameters, we chose the values g ¼ 30, r ¼ 2, M ¼ 5 and
� ¼ 0:028. This parameter set yields an adiabatic evolution
that finds the solution in a relatively efficient way. The
theoretical fidelity is around 0.91. This means that the final
state has more than 90% overlap with the true solution state
corresponding to the factors.
To read out the final state, only the occupation numbers

of the different computational basis states are required. To
measure the populations, we first applied a pulsed field
gradient to dephase transverse magnetization, and then a
½�=2�i�y readout pulse to qubit i and measured the resulting

free induction decay signal. The readout procedure was
applied to each of the three qubits in subsequent experi-
ments. In the experiment, we used a sample in natural
abundance; i.e., only 	 1% of the molecules had a 13C
nuclear spin. To distinguish those molecules against the
large background, we read out all three qubits via the 13C
channel, by applying SWAP gates and measuring the 13C
qubit.
Figure 1(c) shows experimental spectra obtained by

reading out the 13C qubit, at different instances during
the adiabatic transfer. The spectrum consists of four reso-
nance lines; in the figure, they are labeled by the corre-
sponding logical states of the 1H and 19F qubits. While
these four resonance lines have initially comparable am-
plitude, the last 2 measurements find almost all the ampli-
tude in the line at 15.5 Hz, which corresponds to the j11i
state of the 1H and 19F qubits. Since the amplitude is

1
F

9

1 C3

1
H

FIG. 2 (color online). (a) Molecular structure of Diethyl-
fluoromalonate, (b) schematic representation of the experiment
and (c) the pulse sequence that implements the adiabatic evolu-
tion for factorizing 21. The oval in (a) marks the three spins used
as qubits. The rectangles in (c) labeled with �m represent
rotations by an angle g½1� ðmMÞr��, while the narrow empty

rectangles denote 90� rotations and the wide ones (labeled by

�) denote the refocusing 180� pulses. The delays are dðmÞ
3 ¼

10ðmMÞr�ð 1
�JHF

þ 2
�JHC

Þ, dðmÞ
4 ¼ 10ðmMÞr�ð 1

�JHF
� 2

�JHC
Þ, dðmÞ

5 ¼
1

2jJCFj � 20ðmMÞr�ð 1
�JHC

þ 1
�jJCFjÞ, and dðmÞ

7 ¼ 32ðmMÞr� 1
�JHC

.

Negative durations dðmÞ
5 < 0 according to this formula were

implemented as positive ones, by omitting the dashed � pulse

preceding dðmÞ
5 and replacing the gray �x pulse immediately

after the period by an x pulse.
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positive, the 13C qubit must also be in the j1i state. The red
(dark gray) bars in Fig. 1(b) show the populations of the
eight computational ground states. They were obtained
from a least-squares fit to the spectra measured after
reading out the three different qubits. The results con-
firm that the final state has a high occupation probability
on the j111i state, which encodes the two factors p ¼ 3
and q ¼ 7.

Obviously, there is only the relatively small deviation
from the theoretical expectation in our experiment, which
mainly results from the experimental imperfections such as
the inhomogeneity of the radio frequency field and the
static magnetic field, and the imperfect calibration of the
radio frequency pulses. The decoherence from spin relaxa-
tion was small, since the total experimental time of
�50 ms was short compared to the shortest relax-
ation time of �1:0 s. As a comparison, the NMR demon-
stration of Shor’s algorithm based on the circuit model took
a long time (�720 ms) which results in the severe deco-
herence effects [5]. Therefore, the experimental results
exhibit the advantage of our adiabatic approach.

To assess its usefulness, the time complexity is another
important aspect of the algorithm. While a decisive mathe-
matical analysis of this quantum adiabatic algorithm has
not been possible, we performed numerical simulations to
assess its efficiency [8]. For each possible problem size, we
randomly chose 50 different integers with nontrivial prime
factors. Then we numerically integrated the Schrödinger
equation (6) by a fourth-order Runge-Kutta technique. For
each run, we determined the evolution time required to
reach a success probability between 0.12 and 0.13 [8]. In
Fig. 3, we plot the average of these evolution times against
the problem size up to the range of 16 bits. The circles
represent simulated data, while the solid curve is a qua-
dratic fit. The good agreement between data points and fit
provides clear evidence that our algorithm scales quadrati-

cally in the range we could simulate, roughly the same as
Shor’s algorithm.
In conclusion, based on the adiabatic theorem, we pro-

pose a new quantum algorithm for factorizing integers with
fewer qubits than Shor’s algorithm. At the same time, we
have experimentally demonstrated the factorization of 21
in a NMR quantum simulator. This is, to our knowledge,
the first experimental demonstration of a quantum algo-
rithm that factorizes an integer larger than 15. Furthermore,
we have seen evidence from numerical simulations that the
required running time exhibits a polynomial behavior with
the problem size in the range of the capabilities of our
classical computer. Although the proof for the complexity
of quantum adiabatic algorithm is still an open and timely
issue, the encouraging results presented here as well as its
inherent robustness [14] show that it certainly deserves
further study.
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