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By using Monte Carlo simulations, we study the complex phase behavior of charged-stabilized

colloidal particles in a two-dimensional substrate potential with quasicrystalline decagonal symmetry.

In the regime where the strengths of the substrate and colloidal pair potential are comparable, we identify

a novel and unexpected quasicrystalline phase with pure 20-fold bond order and a disordered structure

without any apparent rotational symmetry. Furthermore, we demonstrate how phasonic displacements in

the substrate potential induce phasonic flips in the colloidal monolayer.
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Quasicrystals are nonperiodic solids that nevertheless
exhibit Bragg reflection due to their long-range positional
order [1,2]. In particular, they possess rotational point
symmetries [3], such as fivefold or tenfold rotational
axes, that are not allowed in periodic crystals. A distinctive
physical property of quasicrystals are phasons, which cor-
respond to correlated rearrangements of atoms throughout
the quasicrystal. Phasons, like phonons, are hydrodynamic
modes since they do not cost free energy in the long-
wavelength limit [4]. Their different features are still a
main topic and intensely discussed in the field [5,6].

In recent years, increasing research activities have been
directed towards the question of how atoms order on
quasicrystalline surfaces [7–11]. The goal of such studies
is to control the growth of quasicrystals and ultimately
their exceptional material properties [7], exemplified by
low coefficients of friction [12], catalytic qualities [13],
and the possibility of producing photonic band gaps [14].

Colloidal suspensions of micron-sized particles are well-
known model systems for statistical physics and for mim-
icking atomic systems [15–17]. In this Letter, we will
theoretically study the complex phase behavior of
charge-stabilized colloidal suspension in a two-
dimensional decagonal potential. While atomic quasicrys-
talline surfaces are strongly determined by chemical de-
tails, our approach offers the opportunity to concentrate on
the fundamental aspects of phase ordering on such sub-
strates and thereby identifies possible phases in atomic
monolayers. In particular, we will investigate bond-
orientational order following the seminal work of Nelson
and Halperin for melting on neutral and periodic substrates
[18]. Furthermore, we will shortly demonstrate that a
phasonic displacement in the model substrate induces col-
loidal reordering. The dynamics of a single colloidal par-
ticle in a decagonal potential was already described in [19].

Although our work is purely theoretical, we note that the
decagonal substrate potential for colloids can be realized,
e.g., by the intensity pattern of interfering laser beams.
This method provides a nontrivial external potential for
inducing novel complex colloidal structures commonly
referred to as optical matter [20]. On the other hand, light

fields with quasicrystalline symmetry have already been
used to create nonlinear photonic quasicrystals [6], to
induce quasicrystalline ordering in liquid crystals [21], or
to trap atomic clouds [22].
In our case, the external potential would correspond to a

decagonal light field created by five interfering laser beams
with identical polarization [cf. Fig. 1(a)]. For a vanishing
tilt angle � ! 0 between the beams, the potential in the xy

plane is [21] VðrÞ ¼ � V0
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�j ��k�, where �j are the phases of the laser light waves

and Gj their wave vectors projected onto the xy plane [cf.

Fig. 1(b)]. The prefactor is chosen such that�V0 gives the
minimum value of the potential. We use the phases to
specify the phononic displacement field u ¼ ½ux; uy� and
the phasonic field w ¼ ½wx; wy� in the decagonal pattern,

following the convention of Ref. [4], �j ¼ u �Gj þ w �
G3j mod 5. We have checked that constant phasonic dis-

placements do not influence the phase behavior of the

FIG. 1. (a) The colloidal potential corresponds to the interfer-
ence pattern of five laser beams arranged symmetrically around
the vertical. A small tilt angle is assumed so that the polarization
vectors can be chosen all the same. (b) The five wave vectors of
the beams projected along the vertical onto the xy plane.
(c) Gray-scale representation of the decagonal potential. White
indicates a high laser intensity and therefore a potential mini-
mum. The bar in the upper right corner marks the length scale
aV ¼ 2�=jGjj. The full and dashed lines indicate, respectively,

the 10 bond directions for c 10 � 0 and the additional bond
directions for c 20 � 0.
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colloids and therefore usually chose u ¼ w ¼ 0. At the
end of this Letter, however, we will explicitly illustrate the
effect of phasonic displacements on this ordering.

The screened Coulomb interaction between the col-
loids is implemented by the pair potential �ðdÞ ¼
A expð��dÞ=d of the Derjaguin-Landau-Verwey-
Overbeek theory, where d is the distance between two
colloids, � the inverse Debye screening length, and A ¼
½Z�e expð�RÞ�2=½4��0�rð1þ �RÞ2� is a prefactor depend-
ing on the radius R of a colloid, its effective surface charge
Z�, and the dielectric constant of water �r. We quantify the
particle density by the spacing aS of the particles in an
ideal triangular lattice. We use the density with aS �
0:7aV , where the colloids occupy exactly all of the minima
in the decagonal potential, to distinguish between the low
(aS > 0:7aV) and high (aS < 0:7aV) density cases. To

study systems with small densities, we employ parameters
used by Strepp, Sengupta, and Nielaba in [23]: R ¼
0:535 �m, Z� ¼ 7800, �r ¼ 78, and temperature T ¼
293:15 K. Furthermore, the length scale of the potential
is fixed to aV ¼ 2�=jGjj ¼ 2:53 �m and the screening

length to ��1 ¼ 0:506 �m ¼ aV=5. In the simulations
with high densities (aS < 0:7aV), the set of parameters is
R ¼ 1:2 �m, Z� ¼ 1000, �r ¼ 78, T ¼ 300 K, aV ¼
5:0 �m, and ��1 ¼ 0:25 �m ¼ aV=20. For 400–900 col-
loids, we performed Monte Carlo simulations using the
METROPOLIS algorithm [24] with periodic boundary con-

ditions, where the box size is chosen such that the deca-
gonal potential displays only small discontinuities at the
boundaries.
We classify the observed colloidal structures by the

bond-orientational order parameter

c m ¼
���������

1
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1
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Xnj
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eim�jk

��������
�
; (1)

where the inner sum is over all nj nearest neighbors of

colloid j, N is the total number of particles, and �jk is the

angle of the bond connecting colloids j and k given with
respect to some arbitrary reference direction. The en-
semble average in Eq. (1) is calculated over 1000 configu-
rations taken every 100 steps after the system has been
equilibrated during 106 Monte Carlo steps. We are particu-
larly interested in bond-orientational order withm ¼ 6, 10,

FIG. 2. (a)–(c) Snapshots for particle positions and (d)–
(f) direct correlation functions for (a),(d) the fluid, (b),(e) the
phase with 20-fold bond order, and (c),(f) with 10-fold bond
order. (g),(h) Phase diagrams for low (g) and high (h) colloidal
densities depending on the potential strength V0 (in units of kBT)
and the particle spacing aS (in units of aV ¼2�=jGjj) in an ideal
triangular lattice. For a detailed description, see the main text.
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FIG. 3. Pair correlation function gðdÞ as a function of the
particle distance d: (a) for colloids placed at the positions of
all minima (solid line) or of all minima deeper than �0:7V0

(dotted line) in the decagonal potential, (b)–(d) determined by
Monte Carlo simulations in the low (b),(c) and high (d),(e)
density cases. In each graph, gðdÞ is drawn for constant aS=aV
and several strengths V0. The inset tables give the values of c m

for m ¼ 6, 10, and 20.
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or 20. In the phase diagrams of Figs. 2(g) and 2(h), dis-
cussed below, a m-fold bond order was assigned to the
phases for c m > 0:1. Note that a nonvanishing c m indi-
cates long-range orientational order. In particular, we call
phases with c 6 > 0:1 triangular including structures where
only clusters of triangles occur with the same orientation.
The shaded regions in the phase diagrams mark the shift of
the phase boundaries if the threshold value 0.1 is varied by
�0:03. A threshold value is necessary to suppress small
random fluctuations of c m, which even for the fluid usually
is about 0.02 to 0.05.

Figures 2(g) and 2(h) show the respective phase dia-
grams for the low and high density cases in the parameter
space, particle spacing aS versus potential strength V0. The
colloidal parameters introduced above guarantee that for
V0 ¼ 0 and also for weak potential strengths [V0=ðkBTÞ<
5] the phase transition from the solid triangular (c 6 > 0:1)
to the fluid (c m < 0:1) phase is observed for both cases. At
sufficiently large V0, a quasicrystalline phase with ten
preferred bond directions (c 10 > 0:1) is favored by the
decagonal potential. Its 2D direct correlation function in
Fig. 2(f) clearly displays 10-fold rotational symmetry and
the long-range quasiperiodic order enforced by the sub-
strate is also evident in the 1D pair correlation function in
Fig. 3(b) to be discussed later. The interesting phases occur
for intermediate potential strengths. In the low density case
[cf. Fig. 2(g)] a quasicrystalline phase with pure 20-fold
bond order is found, i.e., where c 20 > 0:1 but c 10 < 0:1. It
is bounded by the solid and dashed lines. Furthermore,
between the dotted and full lines a triangular-quasi-
crystalline coexistence region exists, where we find that
both the triangular and the quasicrystalline order parame-
ters are nonzero. In the high density case [cf. Fig. 2(h)], the
intermediate phase does not display any bond-orientational
order. We checked that c m < 0:1 form ¼ 6, 10, 12, 15, 20,
and 30. In addition, preliminary studies on the self-
diffusion of the colloids indicate that this disordered phase
changes from a fluid to a solid with increasing density.

To understand the occurrence of the intermediate phase
with 20-fold bond order in Fig. 2(g), we draw possible
bond directions in the representation of the decagonal
potential in Fig. 1(c). The full lines indicate 10 directions
where predominantly deep minima are found. They are
occupied for large potential strengths, and, therefore, the
phase with 10-fold bond order is stable. If the potential
strength is decreased, the colloidal interactions become
more important, and some particles are pushed to more
shallow minima situated along the dashed lines in Fig. 1(c)
in order to increase the interparticle distance. When the
colloids occupy all 20 bond directions uniformly, c 10

vanishes and c 20 > 0:1 indicates the 20-fold bond-
orientational order. Figures 2(b) and 2(c) show snapshots
of the two quasicrystalline phases. In Fig. 2(c), where 10-
fold bond order exists, one can identify lines of particles
oriented along the 10 bond directions. Examples of these
directions are given. In Fig. 2(b), additional bond direc-
tions for the 20-fold bond order are indicated. However,

clear lines where particles are situated are hard to recog-
nize. The direct correlation function for the phase with ten
bond directions [see Fig. 2(f)] possesses ten nearest neigh-
bor peaks that are caused by colloids occupying the deepest
minima of the potential. They also exist as narrow peaks
for the phase with 20-fold bond order [cf. Fig. 2(e)]. There
in addition ten broad peaks, each with two side peaks,
occur due to the occupation of more shallow minima.
The integrated intensities for each of the ten narrow and
the ten broad peaks are about the same. Quantitatively, this
is reflected by the fact that c 10 vanishes for the phase with
20-fold bond order.
The interpretation just discussed is supported by the pair

correlation functions gðdÞ in Fig. 3. In Fig. 3(a), gðdÞ is
plotted when the colloids are only allowed to occupy the
potential minima: namely, all of them (full line) or just the
deepest one (dotted line). Clearly, in the second case a few
distances are preferred. The arrows indicate peak positions
that follow from their left-hand neighbors by multiplica-
tion with the number of the golden mean � � 1:618 reveal-
ing a self-similar property of the decagonal potential. The
pair correlation function determined from Monte Carlo
simulations [cf. Fig. 3(b)] indicates for small V0 a clear
peak close to d ¼ aS ¼ 2aV , as expected for the ideal
triangular phase. For increasing potential strength V0,
new peaks start to develop in the quasicrystalline region
at positions of the deepest minima, but they are still quite
broad so that only c 20 is nonzero (dashed line). Just cross-
ing the phase boundary to the 10-bond-direction phase, the
peaks become more pronounced (dotted line), meaning
that the colloids settle more and more into the deepest
minima. Furthermore, for densities with aS around
1:85aV , the quasicrystalline phase with 20-fold bond order
exists only in a very small range of V0 [cf. Fig. 2(g)]. This
is understandable from the pair correlation functions in
Fig. 3(c). They show that the main peak in the triangular
phase is already close to one pronounced peak of the ideal
gðdÞ in Fig. 3(a). As a result, the colloids can settle into the
deepest minima of the decagonal potential without the
need of strong rearrangements, and, therefore, the 20-
bond-direction phase hardly occurs.
In the high density case, all of the minima of the deca-

gonal potential are occupied by particles, and an excess of
colloids has to fill the space between the minima. This
precludes any 20-fold bond-orientational order in the in-
termediate phase of the phase diagram of Fig. 2(h). From
the theory of melting on incommensurate substrates [18],
one would at least expect an intermediate phase with
30 bond directions where the six triangular directions
lock into the ten preferred directions of the potential.
However, from the simulations we find c 30 < 0:1 in all
points of the intermediate phase, probably because very
small displacements, due to the interactions between the
particles and with the substrate, can easily destroy any
detectable 30-fold bond order.
In Fig. 3(e), we plot the pair correlation function for

aS ¼ 0:56aV for increasing potential strengths V0. The
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most pronounced peak is just determined by the colloidal
density. During the transition from the triangular (c 6 >
0:1) to the disordered (c m < 0:1) phase, gðdÞ changes so
that the other peaks better fit to the ideal pair correlation
function in Fig. 3(a). A distinctive feature occurs in the
phase diagram of Fig. 2(h) at densities with particle spac-
ing aS around 0:58aV ; the triangular phase reaches deep
into the region where bond-orientational order is not ex-
pected. A partial explanation for this is given by the pair
correlation functions in Fig. 3(d). Already for the triangu-
lar phase, the peaks (besides the highest one) fit very well
to the ideal gðdÞ in Fig. 3(a), and therefore the transition
into the disordered phase is delayed to larger V0 [25].

In the end, we demonstrate how a phasonic displacement
of the decagonal potential influences the colloidal order-
ing. Between the snapshots of the quasicrystalline phase in
Figs. 4(a) and 4(b), a phason is introduced with wx ¼
0:1aV . It leads to local rearrangements of the colloids,
commonly called phasonic flips, which we illustrate by
the row of pentagons sketched in the figures. Interestingly,
it seems that always two neighboring pentagons flip their
orientations simultaneously. The row itself does not change
its vertical position. This is in agreement with the dark
horizontal lines in the intensity pattern of Fig. 1(c), which
also do not move when wx is changed.

In conclusion, we have demonstrated the rich phase
behavior of colloidal suspensions in a two-dimensional
quasicrystalline potential. Using a bond-orientational order
parameter, we are able to identify a novel and unexpected
quasicrystalline phase with 20-fold bond order and a dis-
ordered phase in the regime where the strengths of the
substrate and colloidal pair potential are comparable. At a
certain particle density, a particular stable triangular phase
with 6 bond directions is identified. Our results will help to
clarify atomic ordering on surfaces of quasicrystals and
thus contribute to the vision of controlling the growth of
quasicrystalline films and of tailoring their extraordinary
material properties. Phasons strongly determine the behav-
ior of quasicrystals as summarized in the discussion paper
[5]. It is possible to introduce, e.g., uniform phasonic
displacements or strains into the light-induced decagonal
substrate potential. Therefore, our colloidal model system
offers the possibility to study specific static and dynamic

properties of the still hotly debated phasonic degree of
freedom in a controlled manner.
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FIG. 4. Colloidal ordering in the quasicrystalline phase for
aS=aV ¼ 0:65 and V0=ðkBTÞ ¼ 1000, (a) before and (b) after a
phasonic displacement with wx ¼ 0:1aV . Note the flips of
neighboring pentagons indicated by dotted circles.
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