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Chemotaxis receptors in E. coli form clusters at the cell poles and also laterally along the cell body, and

this clustering plays an important role in signal transduction. Recently, experiments using fluorescence

imaging have shown that, during cell growth, lateral clusters form at positions approximately periodically

spaced along the cell body. In this Letter, we demonstrate within a lattice model that such spatial

organization could arise spontaneously from a stochastic nucleation mechanism. The same mechanism

may explain the recent observation of periodic aggregates of misfolded proteins in E. coli.
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Spatial organization of proteins is important in many
cellular processes including growth, division, movement,
and establishment of polarity [1]. Over the past few years,
advances in imaging techniques such as fluorescence mi-
croscopy have led to an increased appreciation of the scope
and character of protein organization in cells. For example,
in Escherichia coli and other bacteria, chemosensory com-
plexes form large clusters containing thousands of recep-
tors [2]. Clustering of these receptors plays a crucial role in
the signal integration and receptor cooperativity required
for chemotaxis [3], i.e., directed movement in chemical
gradients. Recent work by Thiem et al. [4,5] demonstrated
that clusters of chemotaxis receptors are approximately
periodically positioned along the cell wall, independent
of any known positioning mechanism such as the Min
system [6]. Other examples of periodically positioned
protein clusters have emerged as well [7,8]; for example,
protein aggregates associated with cellular aging in bac-
teria exhibit a regular distribution along the cell’s long axis
in filamentous E. coli [8]. The question arises, Could such
periodic positioning arise spontaneously or does it require
the existence of an unknown positioning system?

Here we demonstrate, within the context of a minimal
lattice model, that protein clustering and periodic position-
ing of clusters can emerge spontaneously in growing cells.
Lattice models have been used before to study clustering of
membrane proteins with short-range interactions [9]. In our
model, existing clusters act as sinks for proteins newly
inserted in the membrane, locally reducing the density of
protomers and thus preventing nucleation of new clusters.
As cells grow, existing clusters separate, ultimately allow-
ing new clusters to nucleate at a characteristic spatial
separation set by insertion, diffusion, interaction strength,
and growth rates. The proposed mechanism is quite gen-
eral; while we focus on membrane proteins, the mechanism
also applies to aggregation of cytoplasmic proteins in the
body of the cell (e.g., misfolded protein aggregates) [8].

In our model, the cell membrane is represented by a
square lattice, whose x axis coincides with the long axis of

the cell (see Fig. 1). We employ periodic boundary con-
ditions in the y direction to account for the cylindrical
shape of bacteria like E. coli. The protomers (indepen-
dently diffusing protein units) associated with the cell
membrane [10] are treated as particles which can perform
random walks on the lattice. Each lattice site is therefore
associated with a variable �i, either occupied, �i ¼ 1, or
empty, �i ¼ 0. We assume a nearest-neighbor attractive
interaction between particles with interaction energy J,
measured in units of the thermal energy kBT. The total
energy of the system (in units of kBT) is

E ¼ �J
X
hi;ji

�i�j þ �Jnc; (1)

where nc is the number of particles that are in clusters of
size two or greater. To control the nucleation barrier, we
have included a conformational energy cost given by �J
for each particle with any neighbors, which accounts for
the loss of internal entropy when a particle associates with
a cluster or a second protomer. Experiments indicate that
the lateral receptor clusters are relatively immobile while
individual membrane proteins are typically free to diffuse
[4]. In our lattice model, we therefore consider only move-
ment of individual particles.
We use a Metropolis Monte Carlo algorithm to simulate

the system. A randomly selected particle is moved to one
of its unoccupied neighboring sites with an acceptance
probability p ¼ minð1; e��EÞ where �E is the energy
change due to the proposed displacement of the particle.
One Monte Carlo time step corresponds to one attempted
move for each particle present.
In the absence of the conformational energy cost (� ¼

0), the thermodynamic system described by our energy
function can be mapped to a two-dimensional Ising model,
for which the critical interaction strength is Jc � 1:763
[11]. When J < Jc the system has one stable homogeneous
phase, while for J > Jc, the system can phase separate into
regions of high and low density. The conformational en-
ergy cost increases Jc.
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To account for growth of the bacterial cell, we allow the
lattice to expand in the x direction according to LxðtÞ �
Lxð0Þe�t, where Lxð0Þ is the initial length of the bacterium
and � is the growth rate. The expansion of the lattice is
implemented by random insertion of empty columns at a
rate �LxðtÞ with equal probability anywhere in the lattice.
Based on the observation that newly synthesized chemo-
taxis receptors are inserted into the cell membrane uni-
formly over the entire length of the cell [12], particles are
randomly deposited onto the lattice at a rate kon per avail-
able (i.e., unoccupied) site. This ultimately leads to an
average density of occupied sites �0 ¼ kon=ð�þ konÞ. To
see this, let NðtÞ and nðtÞ be the total number of lattice sites
and the number of occupied sites, respectively, at time t,
with NðtÞ ¼ Nð0Þe�t. On average, the total rate of particle
deposition is given by dn=dt ¼ kon½NðtÞ � nðtÞ�; the gen-
eral solution to this equation is given by nðtÞ ¼ �0NðtÞ þ
Ce�kont, where �0 ¼ kon=ð�þ konÞ is the asymptotic value
of the particle number density, defined by �ðtÞ �
nðtÞ=NðtÞ, and C is a constant. We start our simulations
with �ðt ¼ 0Þ ¼ �0 so that, on average, �ðtÞ remains fixed
at �0.

For our simulations, the cell circumference was fixed at
Ly ¼ 50, with � ¼ 0:5 and interaction strength J ¼ 4,

considerably greater than the critical strength Jc. The
system was initialized with a cluster at each end of the
cell to mimic the existing clusters at the poles [13]. At the
start of each simulation, the length of the cell is Lxð0Þ ¼ 20
and, as the cell grows, newly inserted particles aggregate to
form clusters that grow with time. Figure 2 illustrates a
series of snapshots from a representative run with the
growth rate chosen to be � ¼ 0:8� 10�5, and a deposition
rate kon ¼ 2� 10�6, yielding �0 ¼ 0:2. Notice that clus-

ters spontaneously appear at positions approximately peri-
odically spaced along the cell.
The emergence of a self-organized periodicity of clus-

ters can be understood by noting the positions of new
clusters when they first appear. At the start of the simula-
tion the clusters at each end of the cell act as sinks for
newly inserted particles. As the cell grows and these two
clusters move apart, a new cluster forms roughly at the
midpoint of the cell. As cell growth continues, newly
inserted particles spontaneously aggregate to form new
clusters in between existing clusters; the location of a
newly formed cluster is preferentially at the middle of
two existing clusters, resulting in periodically positioned
clusters (Fig. 2). If the separation between two existing
clusters is below a characteristic length ‘c, diffusion domi-
nates and particles are absorbed by old clusters; if the
separation is larger than ‘c, particles nucleate to form a
new cluster, leading to periodic spacing �‘c.
To quantify the separation between clusters, we obtained

the distribution of the separations between neighboring
clusters for systems grown to Lx ¼ 1900 (see Fig. 3).
Because of stochastic fluctuations, a cluster is not thermo-
dynamically stable until it reaches a critical size. We found
that clusters of size� 50were stable and did not disappear;
we thus used size 50 as a criterion to identify a cluster. The
separation between neighboring clusters is defined to be

FIG. 2 (color online). Snapshots of the model cell membrane
at times 70, 75, 80, 85, and 90 �104 Monte Carlo time steps
(MCS) as defined in the text. The total size of the system in the
final snapshot is 1350 columns by 50 rows, with � 20% of
lattice sites occupied by protein particles [gray (green)]. In the
inset we show a representative image of protein receptor clusters
in E. coli from Victor Sourjik’s lab (courtesy: Victor Sourjik).

FIG. 3 (color online). The distribution of intercluster separa-
tions. Simulations were stopped when the system reached Lx ¼
1900, which corresponds to approximately eight clusters in the
system. The density is �0 ¼ 0:1 and the growth rate is � ¼
1� 10�5. The data were averaged over 70 000 simulations. The
bin size is 20. If the centers of clusters were randomly distrib-
uted, the distribution of intercluster separations would be ex-
ponential as shown by the dotted curve.

FIG. 1 (color online). Schematic of the
lattice model. Particles hop at random
between neighboring lattice points and
can join or leave an existing cluster from
the boundary of the cluster. Columns of
lattice points are inserted at random to
mimic cell growth, and particles are in-
serted at random to mimic protein inser-
tion in the membrane.
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the distance between the centers of mass of the two clus-
ters. For Lx ¼ 1900, there are on average eight clusters
present in the system. The distribution of separations ex-
hibits a single maximum at �x � 230, indicating a pre-
ferred separation between neighboring clusters. Moreover,
the fraction of cluster separations less than half the peak
value is only 7.6%, indicating a strong suppression of close
(i.e., �x < 115) clusters. For comparison, the distribution
of intercluster separation would be an exponential if the

cluster centers were positioned randomly (dotted line in
Fig. 3).
To investigate the mechanism responsible for cluster

positioning, we studied how the position of a newly formed
cluster depends on the positions of existing clusters. For
simplicity, we used periodic boundary conditions in the x
direction and initialized simulations with Lxð0Þ ¼ 1. We
used � ¼ 0:5, J ¼ 4:0, kon ¼ 1:1� 10�6, and � ¼ 10�5,
yielding �0 � 0:1. As the system grows, the deposited
particles aggregate to form first one cluster and, later, a
second stable cluster. We recorded the position of the
second cluster (once it had reached a size �50) with
respect to the first. The distribution of the separations
between the new cluster and the existing cluster as a
fraction of the total cell length is plotted in Fig. 4(a). The
distribution peaks at a reduced distance of 0.5; i.e., the
second cluster is most likely to form at the midpoint,
equidistant from the edges of the existing cluster.
To understand why the second cluster formed near mid-

cell, we investigated the density profile of particles in the
dilute region between two stable clusters during cell
growth. Simulations were performed, as for Fig. 4(a), using
periodic boundary conditions in x and starting from a
single column. In Fig. 4(b), we plotted the particle density
profile along the x axis as measured when the system
reaches Lx ¼ 300 at an average global particle density
�0 ¼ 0:1. In these simulations, at Lx ¼ 300, typically
there was one stable cluster in the system. Position was
measured from one edge of the cluster and was normalized
by the distance between the two flanking edges of the
cluster. The average particle density fits very well to a
quadratic function with the maximum at midcell.
The observed quadratic particle density profile can be

understood as follows. The average local particle density
�ðr; tÞ in regions that do not contain clusters satisfies the
diffusion equation @�=@t ¼ Dr2�þ kon, where D is the
particle diffusion coefficient and kon is the particle inser-
tion rate. Consider a region flanked by two stable neigh-
boring clusters with flanking edges at x ¼ 0 and x ¼ ‘.
Approximating stable clusters as perfect sinks for particles
gives the boundary conditions �ð0Þ ¼ �ð‘Þ ¼ 0. Hence, in
the membrane strip between two clusters, the steady-state
solution [14] to the diffusion equation is

�ðxÞ ¼ � kon
2D

�
x� ‘

2

�
2 þ kon‘

2

8D
: (2)

The peak of �ðxÞ is located at x ¼ ‘=2, precisely at the
midpoint between two cluster edges. The maximum parti-
cle density is �max ¼ kon‘

2=8D. Notice that it scales quad-
ratically with cluster spacing.
Since the particle density peaks at the midpoint between

two neighboring clusters, this is the most likely place for a
new cluster to nucleate. Of course, nucleation of a new
cluster is a stochastic event; nevertheless, the probability of
nucleating a new cluster is a highly nonlinear function of
the local density, so the quadratic density profile gives rise

FIG. 4 (color online). (a) Distribution of the separation along
the x direction between the center of the new (second) cluster
and the center of the old (first) cluster, using periodic boundary
conditions in x (see inset). The dotted line is a guide to the eye.
(b) The particle density profile in the x direction (periodic
boundary conditions) with one cluster in the system. The particle
density was measured when the system reached Lx ¼ 300 and
was averaged over 10 000 simulations. The distance was nor-
malized by the separation between the two flanking edges of the
cluster as measured in the x direction. The smooth line is a fit to a
parabola. (c) The average intercluster separation versus the
particle density �0 at fixed growth rate � ¼ 10�5. (d) The
average intercluster separation versus growth rate � at fixed
particle density �0 ¼ 0:1. The smooth curves in (c) and (d) are
fits to power laws ��0:47

0 and ��0:53 , respectively. (e) The cluster

size distribution averaged over 10 000 simulations. Cluster sizes
were measured when the system reached Lx ¼ 1900; the solid
red line is a fit to the curve y ¼ exp½a1xþ a2x lnxþ a3 lnxþ
a4�, with a1 � 0:8, a2 � �0:37, a3 � �7:6, and a4 � �0:9, for
cluster size. (f) Dependence of the standard deviation of cluster
separation (normalized by the average separation) on interaction
strength J. The parameters and the method for collecting data
were the same as in (a). In the inset we show the dependence of
intercluster separation on J.
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to the sharply peaked distribution for the position of the
new stable cluster [Fig. 4(a)].

The existence of a relatively sharp density threshold for
cluster nucleation predicts scaling relations for the mean
cluster separation. For steady-state growth of a long cell,
on average a new cluster must appear between neighboring
old clusters every time the cell doubles (e.g., see Fig. 2). If
there is a sharp density threshold �thresh for cluster nuclea-
tion, then a new cluster will nucleate when the peak density
between old clusters reaches approximately this value. We
can therefore estimate the upper limit of cluster separation
in terms of �thresh (with the lower limit being a factor of 2
smaller, and the mean lying between the two). According
to Eq. (2), the peak density between clusters depends on
their separation ‘ according to �max ¼ kon‘

2=8D, where
kon ¼ �0�=ð1� �0Þ ’ �0�. Nucleation of a new cluster
should therefore occur when �max � �thresh, that is, for a

cluster separation ‘c � 2½2D�thresh=ð�0�Þ�1=2. This im-
plies that the mean cluster separation in a growing cell

will obey the scaling relations ‘c � ��1=2
0 and ‘c � ��1=2,

which are verified in Figs. 4(c) and 4(d).
In addition to the larger stable clusters, our stochastic

nucleation mechanism also generates a quasi-steady-state
distribution of smaller clusters as shown in Fig. 4(e).
Finally, in Fig. 4(f), we plot the dependence of the standard
deviation of intercluster separation on the interaction
strength J; the data imply that the periodic placement of
protein clusters is robust to variations in J for J < 5.

For chemoreceptors in E. coli, the observed intercluster
spacing is of the order of 1 �m. Assuming a membrane
diffusion constant of D ¼ 0:018 �m2= sec [15] and dou-
bling time of around 60 min, we estimate �thresh � 2:4�
10�3�0, implying that the vast majority of the chemo-
receptors are bound to clusters rather than existing as
free protomers. This prediction is testable using modern
fluorescent imaging techniques [16]. In principle, the scal-
ing relations for ‘c as a function of receptor density and
growth rate can also be tested experimentally by measuring
cluster spacings in cells overproducing or underproducing
chemoreceptors and growing at different rates. Moreover,
our model predicts that if proteins are produced (and hence
inserted into the membrane) in bursts rather than continu-
ously, it would adversely affect the periodic placement of
clusters.

Finally, we consider the biological significance of the
periodicity of protein clusters. In the case of chemorecep-
tors, periodic cluster spacing ensures that each daughter
cell receives at least one cluster following cell division or
fragmentation of a filamentous cell [4]. In contrast, the
larger spacing between misfolded protein aggregates ob-
served in filamentous cells typically implies the presence
of at most one aggregate in a wild-type cell. This ensures
that during division only one daughter can receive an
aggregate, with the unequal partition resulting in different

fitnesses of the two daughters, and, potentially, an overall
reproductive advantage for the population [8].
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