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We study the triangular antiferromagnet Cu3 in external electric fields, using symmetry group argu-

ments and a Hubbard model approach. We identify a spin-electric coupling caused by an interplay

between spin exchange, spin-orbit interaction, and the chirality of the underlying spin texture of the

molecular magnet. This coupling allows for the electric control of the spin (qubit) states, e.g., by using an

STM tip or a microwave cavity. We propose an experimental test for identifying molecular magnets

exhibiting spin-electric effects.
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Single-molecule magnets (SMMs) [1] have emerged as a
fertile testing ground for investigating quantum effects at
the nanoscale, such as tunneling of magnetization [2,3], or
coherent charge transport [4–6], or the decoherence and the
transition from quantum to classical behavior [7]. SMMs
with antiferromagnetic coupling between spins are espe-
cially promising for the encoding and manipulation of
quantum information [8–11], for they act as effective two-
level systems, while providing additional auxiliary states
that can be exploited for performing quantum gates. Intra-
and intermolecular couplings of SMMs can be engineered
by molecular and supramolecular chemistry [12], enabling
a bottom-up design of molecule-based devices [13].

While the properties of SMMs can be chemically modi-
fied, the fast control required for quantum information
processing remains a challenge. The standard spin-control
technique is electron spin resonance (ESR) driven by ac
magnetic fields BacðtÞ [7]. For manipulation on the time
scale of 1 ns, Bac should be of the order of 10�2 T, which,
however, is difficult to achieve. The spatial resolution of
1 nm, required for addressing a single molecule, is also
prohibitively small. At these spatial and temporal scales,
the electric control is preferable, because strong electric
fields can be applied to small regions by using, for ex-
ample, STM tips [14,15], see Fig. 1(a). Also, the quantized
electric field inside a microwave cavity can be used [16–
19] to control single qubits and to induce coupling between
them even if they are far apart. Electric control of spins has
been studied in multiferroic materials [20] and semicon-
ductor spintronics [21], focusing on the control of a large
number of spins and producing macroscopic magnetization
and spin currents. Here, we are interested in control over a
single molecular spin system.

We identify and study an efficient spin-electric coupling
mechanism in SMMs which is based on an interplay of spin
exchange, spin-orbit interaction (SOI), and lack of inver-
sion symmetry. Spin-electric effects induced solely by SOI
have been proposed [22] and experimentally demonstrated
[23] in quantum dots. However, these SOI effects scale

with the system size L as L3 [22], making them irrelevant
for the much smaller SMMs. Thus, additional ingredients-
such as broken symmetries- must be present in SMMs for
an efficient coupling between spin and applied electric
field.
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FIG. 1 (color online). (a) Cu3-triangle exposed to an electric
field EðtÞ created by, e.g., an STM-tip. For E ¼ 0, the exchange
couplings, represented by the thickness of Cu-Cu bonds, are
equal (light triangle). A finite E affects the (super-) exchange
coupling in a directional way (dark triangle). (b),(c) Low-energy
S ¼ 1=2 states of Cu3 in a magnetic field B, with the zero-field
SOI splitting �SO ¼ 1 K. Light (red) and dark (blue) lines
represent the states with � ¼ þ1ð�1Þ. If B k z (b), the transi-
tions induced by E (thin arrows) conserve Sz; for B 6k z (c), these
transitions result in a change of spin orientation (thick arrows).
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In the following, we demonstrate the possibility of such
spin-electric effects in SMMs by focusing on a specific
example, namely, an equilateral spin triangle, Cu3 [24]. In
this SMM, the low-energy states exhibit a chiral spin
texture and, due to the absence of inversion symmetry,
electric fields couple states of opposite chirality.
Moreover, SOI couples the chirality to the total spin, and
thus an effective spin-electric interaction eventually
emerges.

Spin-electric coupling.—At low energies, the Cu3 can be
described in terms of an effective spin Hamiltonian. There,
the states are labeled by the quantum numbers of three
spins-1=2 si (one for each Cu2þ ion), and the orbital states
are quenched. The (super-) exchange and SOI are then
expressed as Heisenberg and Dzyaloshinski-Moriya inter-
action of spins, [24],

H0 ¼
X3

i¼1

Jiiþ1si � siþ1 þ
X3

i¼1

Diiþ1 � si � siþ1: (1)

The D3h symmetry of the triangle implies several relations
between the coupling constants [25]. We neglect the in-
trinsic deformation of Cu3 triangle that makes one of the
sides slightly shorter. Since Jpq � 5 K and jDpqj � 0:5 K,

the Heisenberg terms determine the gross structure of the
energy spectrum, and the Dzyaloshinski-Moriya terms the
fine one. In particular, since Jpq > 0, the ground state

multiplet has total spin S ¼ 1=2, and the gap to the first
excited S ¼ 3=2 quadruplet is �H � 3J=2. The S ¼ 1=2
subspace is spanned by the symmetry-adapted states
j�;Mi, i.e.,

j�1;þ1=2i � ðj#""i þ ��j"#"i þ ��j""#iÞ=
ffiffiffi
3

p
; (2)

j�1;�1=2i � ðj"##i þ ��j#"#i þ ��j##"iÞ=
ffiffiffi
3

p
; (3)

with �� ¼ e�i2�=3, that are simultaneous eigenstates of the
chirality operator Cz and of Sz (total spin), for the respec-
tive eigenvalues � and M. Here, we have introduced the
chirality C with components

Cx ¼ ð�2=3Þðs1 � s2 � 2s2 � s3 þ s3 � s1Þ; (4)

Cy ¼ ð2= ffiffiffi
3

p Þðs1 � s2 � s3 � s1Þ; (5)

Cz ¼ ð4= ffiffiffi
3

p Þs1 � ðs2 � s3Þ: (6)

They satisfy ½Ck; Cl� ¼ i2�klnCn and ½Ck; Sl� ¼ 0, and act
as Pauli matrices in the j� ¼ �1i bases.

Next, we study the effect of an electric field E on the
Cu3-spins using general symmetry group arguments. The
low-energy jE0�; S ¼ 1=2i (jA0

2; S ¼ 3=2i) spin-orbital
states form two E0 (four A0

2) irreducible representations
(IRs) of D3h, with the S ¼ 1=2 states lower in energy
[24,25]. The states jE0�; Szi transform in the same way as
the chiral states j� ¼ �1; Szi, Eqs. (2) and (3), with orbi-
tals localized on the Cu ions corresponding to the triangle

vertices. An electric field E couples to Cu3 via eE �R,
where e is the electron charge, and R ¼ P

3
j¼1 rj. The Z

component of R transforms as A0
2 IR, while the compo-

nents X� ¼ �X þ iY in the Cu3 plane transform as the
two-dimensional IR E0. From the Wigner-Eckart theorem,
it follows that the only nonzero matrix elements of R are
ehE0þ; SzjX�jE0�; Szi ¼ ehE0�; SzjXþjE0þ; Szi ¼ 2id, with
d real denoting the electric dipole coupling. The resulting
coupling between the E-field and chirality in the spin-
Hamiltonian model takes the compact form �HE ¼ dE0 �
Ck, where E0 ¼ Rzð�ÞE is rotated by � ¼ 7�=6� 2�
about z, and Ck ¼ ðCx; Cy; 0Þ.
To emphasize that the spin-electric effect derived above

is based on exchange, we reinterpret our results in terms of
spin interactions. In an equilateral triangle, and in the
absence of electric field, the spin Hamiltonian is given by
Eq. (1) with equal exchange couplings Ji;iþ1 � J. Using
then Eqs. (4) and (5), we find

�HE ¼ 4dE

3

X3

i¼1

sin½2ð1� iÞ�=3þ ��si � siþ1; (7)

where � is the angle between an in-plane E-field and the
vector r12 pointing from site 1 to 2. This form of �HE

shows that the E-field lowers the symmetry by introducing
direction-dependent corrections to the exchange couplings
Jiiþ1. E.g., if � ¼ �=2, �J23 ¼ �J31 � �J12. Intrinsic de-
formation of the molecule can be described as an internal
electric fieldEmol, giving Eq. (7) withE ! EþEmol. The
lack of inversion symmetry is crucial for the linear spin-
electric coupling, since the electric field E is odd under
inversion, and the spin is even.
Next, we turn to the SOI. The most general form of

SOI allowed by the D3h symmetry reads, HSO¼P3
i¼1½�k

SOTA00
2
sizþ�?

SOðTE00
þs

i�þTE00�s
iþÞ�, where �?

SOð�k
SOÞ

is the effective SOI coupling constant for the A00
2 - (E

00�-)
irreducible representation, and TA00

2
(TE00

�) is the correspond-

ing irreducible tensor operator in the orbital space [25].
Using again symmetry group arguments, we find that the
SOI Hamiltonian acting in the S ¼ 1=2 subspace reads

�HSO ¼ �SOCzSz, where�SO ¼ �k
SO. The states are there-

fore split into two Kramers doublets jE0�; Sz ¼ �1=2i and
jE0�; Sz ¼ �1=2i. Using Eq. (6), �HSO can be reduced to
the Dzyaloshinski-Moriya interaction, given in Eq. (1).
The coupling to a magnetic field B is given by B � ��g � S,
with the Bohr magneton absorbed in the ��g-tensor. Because
of theD3h-symmetry, ��g is diagonal with components gxx¼
gyy¼g? in the Cu3-plane and gzz ¼ gk normal to it.

Combining �HE and �HSO, we finally obtain the effec-
tive low-energy Hamiltonian in the presence of SOI and
electric and magnetic fields,

Hspin
eff ¼�SOCzSzþg?B? �SþgkBzSzþdE0 �Ck: (8)

From this we see that an in-plane E-field causes rotations
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of the chirality pseudospin. To illustrate the role of B, we
focus on the case E k r31, giving �HE ¼ �dECx. For
B k z, the eigenstates coincide with those of Sz, and thus
E will not induce transitions between j�; 1=2i and
j�;�1=2i, but will do so in subspaces of given M; see
Fig. 1. ForB 6k z, instead, the system eigenstates forE ¼ 0
are no longer eigenstates of Sz, and thus the electric-field
induced transitions result in spin flips; see Fig. 1(c).

The form of spin Hamiltonian, Eq. (8), is set by sym-
metry alone, but a microscopic evaluation of electric dipole
coupling d requires an ab initio approach which is beyond
the scope of this work. However d can be directly accessed
in experiments, e.g., by standard ESR measurements in
static electric fields; see Fig. 2. We can estimate d, jEj and
the spin-manipulation (Rabi) time resulting from Eq. (8) as
follows. For d between dmin ¼ 10�4eR12 and dmax ¼ eR12

and for E 	 102 kV=cm, obtainable near an STM tip, see
Fig. 1(a), the Rabi time is �Rabi 	 0:1–103 ps. The condi-

tion dE 
 �H for the validity of H
spin
eff in Eq. (8) provides

another lower bound on the spin-manipulation time,
namely �min

Rabi 	 10 ps. The spin control is not affected by

the time-independent Emol.
Hubbard approach.—In order to gain further insight

into the interplay between the exchange interaction and
the electric field E, we introduce an Ns-site Hubbard
model of the triangular spin chain, with Cu ions repre-
sented by the sites on the vertices and the bridging
atoms by sites on the sides, see Fig. 3(a). The correspond-

ing Hamiltonian reads, HH ¼ P
i;	½ðUi=2Þni;	ni;�	 þ

�ini;	 þ ðtiiþ1c
y
i;	ciþ1;	 þ H:c:Þ�, whereUi is the repulsion

on site i, tiiþ1 the hopping matrix element, 	 ¼" , # , andP
i;	n

	
i ¼ Ne. The coupling of the system to E is

HE ¼ eE �X
i;	

½ni;	ri þ ð~riiþ1c
y
i;	ciþ1;	 þ H:c:Þ�: (9)

In the single-site terms, the expectation value of the
electron position r in the Wannier state j�ii is identified
with the ion position ri ¼ h�ijrj�ii. The two-site terms
describe the electric-field assisted hopping of electrons

between neighboring sites, with ~riiþ1 ¼ h�ijrj�iþ1i ¼
ð
k

iiþ1 þ 
?ez�Þriiþ1, and riiþ1 ¼ riþ1 � ri. We now fo-

cus on the two main mechanisms giving antiferromagnetic
coupling, namely, direct exchange and superexchange
(models A and B, Fig. 2(a)] for jtijj 
 Ui. In both cases,

the low-energy subspace (S0) is defined by the states (j
0i)
where the magnetic ions at the triangle vertices are singly
occupied. For E ¼ 0, the projection of these states onto S0

(j�0
1�8i) coincides with the S ¼ 1=2 and S ¼ 3=2 eigen-

states of the Heisenberg Hamiltonian. The degeneracy in
the S ¼ 1=2 multiplet is lifted by E.
In Fig. 3(b), we show the overlap between the projected

ground state j�0
1i and the jS ¼ 1=2; S12 ¼ 0; 1i states for a

given Sz as function of the direction of E (angle �). The
results coincide with the ones from Eq. (7), for both models
A and B. In addition, we find that the splitting (�21 �
E2 � E1) between the two lowest energies varies by less

than 5% with �, in agreement with H
spin
E that predicts no

�-dependence at all.
In Fig. 3(c) we isolate the contribution to �21 arising

from the single- and two-site terms. All these contributions
scale linearly with jEj for every �. The dependence of �21

on t, however, is model dependent. In particular, in model
A, the contributions to �21 arising from the single- and
two-site terms scale as ðt=UÞ3 and ðt=UÞ, respectively, and
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FIG. 2 (color online). Low-energy spectrum of the unde-
formed Cu3 molecule. (a) Energy levels of the Cu3 molecule
in an in-plane magnetic field Bk (black solid line), split as a static
in-plane electric field Ek is turned on (dashed red line and dotted
blue line). (b) The electric dipole coupling d is given by the slope
of energy levels as a function of Ek in a constant magnetic field

[vertical lines in (a)]. Intrinsic deformation gives E !
EþEmol, allowing to measure Emol as the field E at which
the levels cross.

FIG. 3 (color online). (a) Hubbard models A and B of the spin

triangle. Model A: Ne ¼ Ns ¼ 3, ti ¼ t, Ui ¼ U, and �i ¼

k
iiþ1 ¼ 0. Model B: Ne ¼ 9, Ns ¼ 6, 
k

iiþ1 ¼ 0, 
?
iiþ1 ¼ 
,

ti ¼ t, �3k�2 � �3k0�1 ¼ �, U3k�2 �U3k0�1 ¼ U (k, k0 ¼ 1, 2,
3). (b) Overlap between the projected ground state of HH þHE

(j�0
1i), and the eigenstates of s1 � s2 with S12 ¼ 0 (squares) and

S12 ¼ 1 (triangles), as function of the angle � between the
triangle side 1–2 and an in-plane E. The filled (empty) symbols
correspond to the A (B) model, whereas the dotted lines give the
components of the �HE ground state. In both models, t=U ¼ 0:1,
eRE=U ¼ 2:5� 10�2, and 
 ¼ 0:1. (c) Dependence of �21 on
the amplitude E, for E k y and eREmax=U ¼ 2:5� 10�2. Filled
(empty) symbols refer to the A (B) model, and squares (tri-
angles) to 
 ¼ 0:1 (
 ¼ 0) two-site contributions.
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d ¼ 4tje~ry12j=U. Analogous power-law dependences are
found in model B, where the single-site (two-site) contri-
bution scales as ðt=UÞ4 (ðt=UÞ3, and two-site terms domi-
nate in both models. Additional mechanisms, such as the
relative displacements of the ions, can contribute to the
coupling between spin and electric field.

Spin coupling to cavity electric fields.—Exchange cou-
pling of SMMs has been demonstrated in dimers [26]. The
use of this short-range and (so far) untunable interaction
requires additional resources for quantum information pro-
cessing [27]. Efficient spin-electric interaction, on the
other hand, provides a route to long-range and switchable
coupling between SMM qubits. In particular, microwave
cavities are suitable for reaching the strong-coupling re-
gime for various qubit systems [16–19]. Here, we propose
to use such cavities to control single SMMs and, moreover,
to couple the spin qubits of distant SMMs placed inside the
same cavity.

The interaction of a single SMM with the cavity field
reads, �HE ¼ dE0

0 � Ckðby þ bÞ, where E0
0 is the rotated

electric field of amplitude jE0j /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!=V

p
inside the cav-

ity of volumeV [17], and b is the annihilation operator for
the photon mode of frequency !. The low-energy
Hamiltonian of N SMMs interacting with the cavity

mode is Hs-ph ¼
P

jð�SOC
ðjÞ
z SðjÞz þB � ��g � SðjÞ þHðjÞ

intÞ þ
!byb, where

HðjÞ
int ¼ dE0ðei’jCðjÞ� þ e�i’jCðjÞ

þ Þðbþ byÞ; (10)

with CðjÞ
� ¼ CðjÞ

x � iCðjÞ
y and ’j ¼ 7�=6� 2�j. In the ro-

tating wave approximation Hs-ph reduces to the well-

known Tavis-Cummings model [28] when the spins are

in eigenstates of SðjÞz , and B k z. However, if B 6k z it is
possible to couple both chiralities and total spins of distant
molecules. Typically, the electric fields in cavities are
weaker, jE0j 	 1 V=cm for @! 	 0:1 meV [19], than
the ones near STM tips, thus giving �Rabi 	
0:01–100 �s. Obviously, decreasing the cavity volume
V would give shorter �Rabi. Coupling of distant SMMs
can be controlled by tuning two given molecules in and out
of resonance with the cavity mode, e.g., by applying addi-
tional local electric fields. For example, when B ¼ 0 the
coupling constant between distant molecules is J 	
d2E2

0=ð�SO �!Þ, with the typical chirality flipping time

0:05–500 �s. Further effects such as the state transfer
between stationary and flying qubits, or the SMM-photon
entanglement, can be observed in a system described by
Hs-ph.

In conclusion, we find an exchange-based mechanism
that couples electric fields to spins in triangular molecular
antiferromagnets. While our results are derived for Cu3,
analogous symmetry arguments are expected to apply to

other molecular magnets that lack inversion symmetry,
such as V15 [29], Co3 [30], Dy3 [31], Mn12 [2,3], etc.
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[18] A. André et al., Nature Phys. 2, 636 (2006).
[19] M. Trif, V. N. Golovach, and D. Loss, Phys. Rev. B 77,

045434 (2008).
[20] M. Fiebig, V.V. Eremenko, and I. E. Chupis, Magneto-

electric Interaction Phenomena in Crystals (Kluwer
Academic, Dordrecht, 2004).

[21] D. D. Awschalom, D. Loss, and N. Samarth, Semi-
conductor Spintronics and Quantum Computation
(Springer-Verlag, Berlin Heidelberg, 2002).

[22] V. N. Golovach, M. Borhani, and D. Loss, Phys. Rev. B 74,
165319 (2006).

[23] K. C. Nowack et al., Science 318, 1430 (2007).
[24] K.-Y. Choi et al., Phys. Rev. Lett. 96, 107202 (2006).
[25] B. Tsukerblat, Group Theory in Chemistry and

Spectroscopy (Academic, New York, 1994).
[26] W. Wernsdorfer et al., Nature (London) 416, 406 (2002).
[27] F. Troiani et al., Phys. Rev. Lett. 94, 190501 (2005).
[28] M. Tavis and F.W. Cummings, Phys. Rev. 170, 379

(1968).
[29] I. Chiorescu et al., Phys. Rev. Lett. 84, 3454 (2000).
[30] M. C. Juan et al., Inorg. Chem. 44, 3389 (2005).
[31] J. Luzon et al., Phys. Rev. Lett. 100, 247205 (2008).

PRL 101, 217201 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

21 NOVEMBER 2008

217201-4


