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Significant insights into non-Abelian quantum Hall states are obtained from studying special multi-

particle interaction Hamiltonians, whose unique ground states are the Moore-Read and Read-Rezayi states

for the case of spinless electrons. We generalize this approach to include the electronic spin-1=2 degree of

freedom. We demonstrate that in the absence of Zeeman splitting, the ground states of such Hamiltonians

have large degeneracies and very rich spin structures. The spin structure of the ground states and low-

energy excitations can be understood based on an emergent SU(3) symmetry for the case corresponding to

the Moore-Read state. These states with different spin quantum numbers represent non-Abelian quantum

Hall states with different magnetizations, whose quasihole properties are likely to be similar to those of

their spin-polarized counterparts.
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The possibility of quantum Hall states with fractionally
charged quasiparticles that obey non-Abelian statistics has
attracted tremendous interest recently [1–3], partly be-
cause of the potential of using these non-Abelian quasi-
particles for quantum information storage and processing
in an intrinsically fault-tolerant fashion [4–7]. Among such
non-Abelian quantum Hall states, the most studied are the
Moore-Read (MR) state [8], which may have been realized
at Landau level (LL) filling factor � ¼ 5=2 [9], and the
Read-Rezayi (RR) states [10], which may have been real-
ized at � ¼ 12=5 [11] for the case of level k ¼ 3 (see
below for a definition). In these states the spins of the
electrons occupying the valence Landau level (which in
experimental systems is the first excited Landau level) are
assumed to be fully polarized. However, this is an assump-
tion which has not been fully tested numerically. The only
exception is for the case of � ¼ 5=2 where Morf [12]
showed that the fully polarized state (which has a large
overlap with the MR state) has lower energy than the spin
singlet state, consistent with a more recent work using
Monte Carlo simulation to evaluate the energies of the
MR and spin-unpolarized 331 states [13]; all other numeri-
cal studies [14–16] assume full polarization. This is very
unsatisfactory because, in typical systems, the Zeeman
splitting due to electron spin is smaller than the Coulomb
energy scale by about 2 orders of magnitude. The situation
started to change only very recently since Feiguin et al.
[17] carefully studied the magnetization of a half-filled first
excited LL and found compelling evidence that suggests
the electron spins are fully polarized for the case of
Coulomb interaction, even in the absence of Zeeman split-
ting. Experimentally, attempts to detect spin polarization at
� ¼ 5=2 are on-going and remain inconclusive at this point
[18].

In the present Letter we take an approach that is different
but complementary to that of Ref. [17] and study the case
of a special three-body interaction [19] that makes the MR

state the unique ground state for spin-polarized electrons at
half-filling. The special properties of this interaction allow
us to establish a number of exact results. When applied to
the case of spin-1=2 electrons (without Zeeman splitting),
we find that a large ground state degeneracy appears with
different total spin quantum numbers. These degenerate
ground states are constructed explicitly and they form a
single SU(3) multiplet. Such constructions can be gener-
alized to the RR states when spin is included. This suggests
that this family of non-Abelian quantum Hall states may
have very rich spin structure. We further present numerical
evidence suggesting that the low-energy spectrum of the
system is consistent with an emergent SU(3) symmetry in
the long-wavelength and low-energy limit for the MR case.
The three-body interaction that makes the MR state the

exact ground state at half-filling takes the form:

H3B ¼ X

i<j<k

Sijk½r2
ir4

j�ðri � rjÞ�ðri � rkÞ�; (1)

where S is a symmetrizer: S123½f123� ¼ f123 þ f231 þ f312,
and f is symmetric in its first two indices. For spinless (or
spin-polarized) electrons, the following MR state is the
unique zero-energy ground state at half-filling:

cMR ¼
�Y

i<j

ðzi � zjÞ2
�
A

�
1

z1 � z2
� � � 1

z2N�1 � z2N

�
; (2)

where A is the antisymmetrizer, N is the number of pairs
(so we have Ne ¼ 2N electrons), and we neglected the
common exponential factor of LL wave functions. cMR

is annihilated by H3B because it vanishes sufficiently fast
as three particle coordinates approach each other. We now
generalize cMR to include spin degrees of freedom and
construct the following zero-energy states in which we
keep the Jastrow factor ½Qi<jðzi � zjÞ2� of Eq. (2) while
we modify the Pfaffian factor Að� � �Þ:
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c ðz1; �1; � � � ; z2N; �2NÞ ¼
�Y

i<j

ðzi � zjÞ2
�
A

��
1

z1 � z2
� � � 1

z2N�1 � z2N

��X

f�g
cf�g�12 � � ��2N�1;2N

��
; (3)

where �i is the spin-wave function of electron i and �ij is
the spin-wave function of the pair made up of electrons i
and j. Obviously Eq. (3) reduces to Eq. (2) when we take
�ij ¼ j "iij "ij, so that the electron spins are fully polar-
ized. Also because the orbital part of (3) has the same
asymptotic behavior as (2) when 3 electrons approach each
other, (3) is also annihilated by H3B.

We now consider the constraint on cf�g imposed by the

antisymmetrizer A. Because of the fact that the orbital part
is antisymmetric under the exchange between z2j�1 and

z2j, �2j�1;2j must be symmetric under such exchange; i.e.,

�2j�1;2j must represent a triplet state formed by electrons

2j� 1 and 2j. Furthermore, cf�g must be symmetric under

the exchange of different pairs (2j� 1, 2j) and (2k� 1,
2k); as a result cf�g represents a totally symmetric spin state
formed by N spin-1 objects. For N spin-1=2 objects, the
totally symmetric combination forms a unique Stot ¼ N=2
(or fully-polarized ferromagnetic state) with a degeneracy
of 2Stot þ 1 ¼ N þ 1 associated with different Sztot quan-
tum numbers. For a spin-1 object, on the other hand, Stot is
no longer unique for the totally symmetric combination; it
was found that [20]

Stot ¼ N;N � 2; N � 4; � � � ; (4)

with each value appearing exactly once. The total degen-
eracy is

D0 ¼
X

Stot

ð2Stot þ 1Þ ¼ ðN þ 1ÞðN þ 2Þ=2: (5)

An easier way to understand this larger degeneracy is to
recognize that for each spin-1 object there are 3 internal
states associated with Sz ¼ 0, �1; thus states formed by
totally symmetric combinations of N spin-1 states form a
single totally symmetric representation of SU(3) [20,21],
which is represented by a row of N boxes in the Young
tableaux or simply the representation ½N� [22]. The result,
Eq. (4), may be viewed as decomposing a single irreducible
representation of SU(3) into multiple irreducible represen-
tations of its subgroup SU(2).
The result (4) can also be obtained from an alternative

method. The MR state can also be written as

cMR ¼
� Y

i<j�2N

ðzi � zjÞ
�

� S

� Y

0<i<j�N

ðzi � zjÞ2
Y

N<k<l�2N

ðzk � zlÞ2
�
; (6)

where S is the symmetrizer. In Eq. (6) one divides the
electrons into two groups, A and B; within each group one
has the Jastrow factor

Q
0<i<j�Nðzi � zjÞ2, which is

then symmetrized among all particles. We now generalize
Eq. (6) to include electron spins:

c ðz1; �1; � � � ; z2N; �2NÞ ¼
� Y

i<j�2N

ðzi � zjÞ
�
S

�
�A�B

Y

i<j�N

ðzi � zjÞ2
Y

N<k<l�2N

ðzk � zlÞ2
�
; (7)

where �A and �B represent the spin-wave functions for clusters A and B respectively. The symmetrization imposes the
following constraints on the spin-wave functions: (i) �A and �B are totally symmetric spin-wave functions of N spin-1=2
particles and thus each represents a spin-N=2 object; (ii) since the two clusters are also symmetrized, the total spin is a
symmetric combination of two spin-N=2 objects, which leads to Eq. (4).

The construction above can be easily extended to the RR states [10] at level k to include spin, which are zero-energy
states of a special kþ 1-body interaction:

c ðz1; �1; � � � ; zkN; �kNÞ ¼
� Y

i<j�kN

ðzi � zjÞ
�
S

�Yk

I¼1

�
�I

Y

0<i<j�N

ðzIi � zIjÞ2
��

; (8)

where we have divided Ne ¼ kN electrons into k clusters,
�I is the spin-wave function of the Ith cluster, and z

I
i is the

spatial coordinate of the ith electron of the Ith cluster.
Using the same arguments as before, we find that we
have k spin-N=2 objects (one from each cluster) forming
totally symmetric combinations; the total ground state
degeneracy is

D0 ¼ ðkþ NÞ!
k!N!

; (9)

which applies to the Laughlin (k ¼ 1) and MR (k ¼ 2)
cases as well. It coincides with the totally symmetric ½N�
representation of the SUðkþ 1Þ group [22].
Our prediction of the spin quantum numbers for the case

of k ¼ 2 has been confirmed by exact diagonalization of
the three-body Hamiltonian properly generalized to in-
clude spin degrees of freedom, on the sphere for up to
10 electrons. The Hamiltonian of Eq. (1) is not strictly
positive definite when spin reversed states are included. In
addition, it contains an arbitrary scale. We will work
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instead with a Hamiltonian made of projection operators:

H3B ¼ X3

m¼1

VmPð3N�=2�m; 1=2Þ

þ X2

n¼1

Vn
4Pnð3N�=2� 4; 1=2Þ

þ V0
3Pð3N�=2� 3; 3=2Þ

þ V5Pð3N�=2� 5; 1=2Þ; (10)

where N� is the total magnetic flux through the system and

PðL; SÞ projects out the state of angular momentum L and
spin S. When such states are not unique we distinguish
them with an index n. The V’s are the three-body pseudo-
potential parameters [23] all of which were set to be 1. The
projection operators P have unit eigenvalues as expected.
The first 6 terms project out the states of 3 fermions with
relative angular momentum less than 5, which are absent
both in the MR state and the states of Eq. (3). The last term
projects out all 3 fermionic states with relative angular
momentum m ¼ 5, and spin S ¼ 1=2 [24] in which the
opposite spins have relative angular momentum zero,
which are also absent in Eq. (3).

Figure 1 shows the spectra for the cases of 8 electrons
(4 pairs) and 10 electrons (5 pairs), respectively. We find
that the ground states with zero energy all have total
angular momentum L ¼ 0, which is the same as the MR
state, and their spin quantum numbers indeed take values
Stot ¼ N;N � 2; N � 4; � � � , as predicted. In addition to
ground states, the spectra of the lowest-energy excitations
are also noteworthy. We see in both cases the lowest-
energy excited states have total angular momentum L ¼
1 and have spin quantum numbers Stot ¼ 1; 2; � � � ; N � 1,
with each multiplet appearing exactly once with nearly
degenerate energies. If the degeneracy were exact, that
would result in a total degeneracy for the first excited states

D1 ¼
XN�1

Stot¼1

ð2Stot þ 1Þ ¼ N2 � 1: (11)

In the following we argue that this can be understood as the
consequence of an emergent SU(3) symmetry at low
energies.

As discussed above, the ground states can be viewed as a
single, totally symmetric SU(3) multiplet. If the system
had an exact SU(3) symmetry, we could view the ground
state as a fully magnetized SU(3) ferromagnet and the
SU(3) symmetry would be spontaneously broken. Then
the lowest-energy excitations of the system are expected
to be SU(3) spin waves. The lowest-energy spin-wave
state would have the smallest possible angular momentum
L ¼ 1 (corresponding to the smallest momentum in a
translationally-invariant system) and has one SU(3) spin
‘‘flipped.’’ In group theoretical language, a single ‘‘spin
flip’’ means going from the totally symmetric representa-
tion ½N� to the representation ½N � 1; 1� (which is repre-

sented by two rows in the Young tableaux with N � 1 and
1 boxes, respectively), indicating one of the SU(3) spins
is antisymmetrized with another. This mixed representa-
tion indeed has dimension N2 � 1 [22], in agreement with
Eq. (11), and it is easy to show that when decomposing this
single SU(3) representation into SU(2) representations,
one obtains Stot ¼ 1; 2; � � � ; N � 1. We thus conjecture
the SU(3) symmetry is a property of the Hamiltonian
(10) at low-energy; this is exact for the ground states, but
for the excited states it is approximate, and supported by
numerical evidence only. Should the symmetry become
asymptotically exact in the long-distance limit, we would
expect the degeneracy of the lowest-energy excited states
to improve as system size increases and become asymptoti-
cally exact.
In a recent work [13], Dimov et al. argued that the low-

energy effective theory of the ferromagnetic state at � ¼
5=2 is described by a perturbed CP2 nonlinear � model
(NL�M). The original CP2 NL�M possesses SU(3) sym-
metry; Dimov et al. argued that, for Coulomb or other
generic two-body interactions, there exist symmetry-

FIG. 1 (color online). Low-energy spectrum of the three-body
Hamiltonian on the sphere at half-filling. The number of flux
quanta N� corresponds to a shift of 3, which is the same as that
of the Moore-Read state. The ground states (at L ¼ 0) with
different total spin quantum number (S) form a single totally
symmetric SU(3) multiplet corresponding to a fully-magnetized
SU(3) ferromagnet; the low-energy excitations at L ¼ 1 (inside
red circle) are understood to be SU(3) spinwaves. Upper panel:
System with 8 electrons (or 4 pairs); lower panel: 10 electrons or
5 pairs.
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breaking perturbations in the effective theory that reduce
the SU(3) symmetry down to SU(2), which is the symme-
try possessed by the microscopic Hamiltonian. The 3-body
Hamiltonian (10) also possesses SU(2) symmetry only.
However our results suggest that for this very special
case, the low-energy physics is very close to the original
CP2 NL�M with all the symmetry-breaking perturba-
tions vanishing; in fact it may be possible to tune cer-
tain parameters in the Hamiltonian (10) to reach such a
high symmetry point. If so, such a special three-body
Hamiltonian would be a very useful point of departure
for studying the various possible spin states and low-
energy excitations above them at � ¼ 5=2. If the ferro-
magnetic state at � ¼ 5=2 indeed possesses approximate
SU(3) symmetry, it will support two instead of just one
low-energy spin-wave modes, and the skyrmions that ap-
pear when � deviates from 5=2 will have a richer spin
structure [13]. Such differences from ordinary SU(2) quan-
tum Hall ferromagnets can be probed using NMR and other
experimental methods.

As emphasized earlier, the large spin degeneracies asso-
ciated with the states described by Eqs. (3) and (8) are
special properties of the special multiple-electron interac-
tion Hamiltonians. For a generic Hamiltonian with SU(2)
symmetry, the degeneracy between states in Eqs. (3) and
(8) with different Stot will be lifted. They will then repre-
sent quantum Hall states with different magnetization that
varies essentially continuously from zero to full polariza-
tion. In general, one would expect these states to dominate
the magnetization of the system at finite but low tempera-
tures. Quasihole excitations on top of these ground states
can be constructed in a manner similar to their spin-
polarized counterparts; for example, a two-quasihole state
on top of the ground state (3) with the same spin quantum
number takes the form

c 2qh¼
�Y

i<j

ðzi�zjÞ2
�

�A

��ðz1��1Þðz2��2Þþðz1��2Þðz2��1Þ
z1�z2

���
�

�
�X

f�g
cf�g�12 ����2N�1;2N

��
; (12)

where �1 and �2 are the quasihole coordinates. Multi-
quasi-hole states can be constructed similarly. Just like
the quasihole states of the MR and RR states [25], the
locations of the quasiholes do not uniquely determine the
state when more than two quasiholes are present and the
degeneracy grows exponentially with the quasihole num-
ber; these are thus non-Abelian quasiholes. Their braiding
properties may also turn out to be the same as those of the
MR state and will be left to future work. Another, but less
likely [17], possibility would be a spontaneous breaking of
the spin SU(2) symmetry that obtains the SU(3) degener-
acy for generic Hamiltonians. If so, the quantum Hall state
will be reduced to the 331 Abelian phase. The 331 state is

not an eigenstate of Stot; it can be constructed as a linear
superposition of states of the form (3) [26] with different
Stot but fixed Sztot ¼ 0.
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