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A design for a quantum gate performing transformations of a single electron spin is presented. The spin

rotations are performed by the electron going around the closed loops in a gated semiconductor device.

We demonstrate the operation of NOT, phase-flip, and Hadamard quantum gates, i.e., the single-qubit gates

which are most commonly used in the algorithms. The proposed devices employ the self-focusing effect

for the electron wave packet interacting with the electron gas on the electrodes and the Rashba spin-orbit

coupling. Because of the self-focusing effect, the electron moves in a compact wave packet. The spin-orbit

coupling translates the spatial motion of the electron into the rotations of the spin. The device does not

require microwave radiation and operates using low constant voltages. It is therefore suitable for selective

single-spin rotations in larger registers.
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Extensive work for design and construction of quantum
processing devices is underway. Proposed implementa-
tions are based on various effects and systems including
photonic [1] and superconducting [2] devices, nuclear
magnetic resonance [3], and ion traps [4]. In one of the
approaches, the quantum bits are stored by spins of elec-
trons confined in quantum dots [5]. Such a quantum gate
can be naturally combined with a classical computer. So
far, the spin setup and readout [6] as well as the spin
rotations [7–9] were realized.

According to the original proposal [5], a universal quan-
tum gate requires exchange operations between pairs of
spins combined with the single-spin rotations. The latter
can be performed by the Rabi oscillations in an external
microwave field. For a number of reasons, selective single-
spin rotations are considered more challenging to imple-
ment than the spin exchange [10]. The problem with the
microwave radiation is that even at magnetic fields of the
order of 10 T, the spin Zeeman energy splitting is relatively
low, and the resonant wavelength is of the order of milli-
meters, which rather excludes fast and site-selective op-
erations on a single spin. It was therefore suggested that a
universal two-qubit gate can be achieved applying the
Heisenberg coupling only: employing additional registers
[10], using inhomogenous Zeeman splitting [11], or ex-
ploiting the spin-orbit coupling [12]. Experimentally, site-
selective single-spin rotations were eventually demon-
strated with an embedded local microwave source [8]
which however requires cooling of the heat generated by
the AC currents. The cooling problem is avoided when the
spin rotations are induced by oscillating electric fields [9]
and occur due to the spin-orbit coupling. In this Letter, we
propose a device in which the single-spin operations are
performed without the microwave radiation or fast voltage
oscillations. The proposed device is based on spatial mo-

tion of the confined electron in the presence of the spin-
orbit coupling around closed loops and requires application
of low DC voltages only. Spin interference of plane waves
in open quantum rings [13] was previously proposed for
implementation of quantum gates [14] operating at reso-
nant wave vectors of the scattered electron. The present
proposal does not require resonant interference, and in
contrast to the quantum ring devices [14] the electron after
the completion of the spin transformation returns to its
original position. Therefore, in our proposal, the standard
gate operations change exclusively the spin part of the
wave function.
We recently showed that induced quantum wires and

dots [15] are formed under metal gates deposited on a
planar structure containing a quantum well due to the
self-focusing effect [16] for the wave function of the con-
fined electron interacting with the electron gas in the metal.
This effect assists in the 100% guaranteed transfer of a
stable electron packet following a trajectory which is con-
trolled by the gate setup and applied DC voltages.
We consider a planar nanostructure of Fig. 1 with a

quantum well and electrodes on top. A single electron is
confined in the quantum well. We assume that the quantum
well is made of a semiconductor of the diamond lattice
structure (Si, Ge), in which the Dresselhaus spin-orbit
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FIG. 1 (color online). The considered structure.
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coupling is absent due to the inversion symmetry of the
crystal. The electron motion in the y direction is frozen by
the quantum well confinement. We use a two-dimensional
Hamiltonian

Hðx; z; tÞ ¼ � @
2

2m

�
@2

@x2
þ @2

@z2

�
� e�2ðx; y0; z; tÞ þHR;

(1)

where y0 is the coordinate of the center of the quantumwell
and HR is the Rashba spin-orbit coupling term due to the
asymmetry of the quantum well potentialHR ¼ �ðpz�x �
px�zÞ, where p are the momentum operators and �’s are
the Pauli matrices. We write the state functions as vectors
(spinors)

�ðx; z; tÞ ¼ c 1ðx; z; tÞ
c 2ðx; z; tÞ

� �
: (2)

The electrostatic potential �2 of Eq. (1) is found from
the Poisson equation using the methodology previously
applied for simulations of electrostatic quantum dots
[17]. �2 is the difference of the total electrostatic potential
� and the electron self-interaction potential�1,�2ðr; tÞ ¼
�ðr; tÞ ��1ðr; tÞ. The total potential fulfills the 3D
Poisson equation

r2�ðr; tÞ ¼ ��ðr; tÞ=��0; (3)

and the self-interaction potential is calculated with the
Coulomb law

�1ðr; tÞ ¼ 1

4���0

Z
dr0

�ðr0; tÞ
jr� r0j ; (4)

where �ðr; tÞ is the electron density calculated for wave
function (2)

�ðr; tÞ ¼ �e½jc 1ðx; z; tÞj2 þ jc 2ðx; z; tÞj2��ðy� y0Þ: (5)

Equation (3) is solved numerically in a rectangular box
containing the studied nanostructure. Potentials applied to
the gates are assumed as Dirichlet boundary condition. The
content of the computational box is charge neutral, so on its
surface we assume vanishing normal component of the
electric field. Calculated potential �2ðr; tÞ contains a con-
tribution of the charge induced on the metal surface by the
confined electron. This contribution introduces the self-
focusing effect [16]. The time dependence in (3–5) enters
due to the motion of the electron packet. As the initial
condition, we take the solution of a time-independent
Schrödinger equation Hðx; zÞ�0ðx; zÞ ¼ E�0ðx; zÞ for a
given spin state. The time evolution is obtained numeri-
cally with a finite-difference scheme consistent with the
time-dependent Schrödinger equation �ðtþ dtÞ ¼ �ðt�
dtÞ � 2i

@
HðtÞ�ðtÞdt.

Applying weak voltages to the gates with respect to the
substrate, one can [15] set the electron packet in motion
and stop it in a chosen location. The products of the

momentum and spin operators in the HR operator perturb
somewhat the electron trajectories. Electron motion influ-
ences the spin in a much more pronounced extent.
Let us consider the system presented in Fig. 2(a) with

two electrodes e1 and e2 placed on top of the structure of
Fig. 1. In the initial state, we put zero voltage to electrode
e1 and small negative to e2 [15]. The electron localized
ground state is formed under e1. We assume that the spin is
in the state which has the same average value in all x, y, z
directions,

�ðx; z; 0Þ ¼ �0ðx; zÞ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p þ 3
p ð1þ ffiffiffi

3
p Þ

ð1þ iÞ
" #

:

The motion of the packet starts when the voltage applied to
e2 is switched to V2 ¼ 0:2 mV which extracts the electron
from underneath the gate e1. The time dependence of the
electron position is given in Fig. 2(b) with a solid black
line. The dashed curves show the average values of the
components of the spin. For the electron moving parallel to
the z axis, the h�xi value is preserved and the h�yi and h�zi
components oscillate: the spin is rotated around the x axis.
The rotation angle depends on the coupling constants, the
electron effective mass, and the distance traveled by the
electron. For simulations presented in Fig. 3, we assume
the coupling constant � ¼ 7:2� 10�13 eVm within the
range predicted for the asymmetric quantum wells [18].
The quantum well and the potential barriers are taken
10 nm thick. We apply the Si material parameters m ¼
0:19m0 and � ¼ 13. We deduce that the distance for which
the initial spin is restored is �SO ¼ 1:8 	m.
Since the electron motion along perpendicular directions

induces spin rotations around perpendicular axes, one can
perform any rotation by making the electron move under
electrodes forming a closed loop. In Fig. 3, we propose a
setup performing the logical NOT operation. The electrodes
are marked with the gray color. The spin of the electron

FIG. 2 (color online). (a) Position of the electrodes e1, e2
(arrows) on top of the structure. (b) Electron packet z position
vs time (solid line, left axis). Average values (dashed lines) of the
Pauli operators: h�zi [red (light gray) color], h�xi (black) and
h�yi [blue (dark gray)]—referred to the right axis.
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confined in the quantum dot induced [15] under e1 elec-
trode stores the qubit. The e2 electrode serves to guide the
electron around a closed loop back to the dot induced under
e1. For illustration, initially the z-component of the spin is
set in the ‘‘up’’ state

�ðx; z; 0Þ ¼ �0ðx; zÞ
0

� �
:

The packet is set in motion to the right by applying a
constant þ0:2 mV voltage to e2 and a short pulse of
�0:4 mV to e3. The electron trajectory is drawn with the
blue (dark gray) curve in Fig. 3. The time dependence of
the electron position is plotted in Fig. 4. In the A region, we
notice an initial increase of the velocity and then a constant
velocity motion till the end of the A segment. After reflec-
tion at the cut corner [15], the electron goes into the B part
where the x position becomes fixed and the z one increases
with time. Passing under the C and D segments, the elec-
tron returns to its initial position. At the end of the loop, the
electron slows down which results in the e1, e2 potential
difference. When the electron comes to under e1, the
potential of this electrode is changed to þ0:3 meV which

traps the electron in the induced dot. The oscillations of the
blue (dark gray) curve at the end of the motion are due to an
excess of the kinetic energy.
The spin direction at the corners of the loop is schemati-

cally marked by arrows in Fig. 3. The time dependence of
h�xi, h�yi, and h�zi are plotted in Fig. 4 with dashed lines:
black, blue (dark gray), and red (light gray), respectively.
Initially the spin is oriented ‘‘up’’ h�zi ¼ 1, and h�xi ¼
h�yi ¼ 0. In the A segment, the electron moves in the x

direction so the spin is rotated around the z axis, and no
spin change is observed in Fig. 4. The length of the B
segment is such that the spin is rotated around the z axis by
90� and takes the ‘‘from the page’’ orientation: the spin is
in the �y eigenstate and h�yi ¼ 1. When the electron

returns in the �x direction, the spin is rotated by 180�
and takes the ‘‘to the page’’ orientation h�yi ¼ �1 at the

end of the C part. On the D segment, the spin is rotated by
�90� around the x axis. Returning to e1, the electron is in
the ‘‘down’’ spin eigenstate h�zi ¼ �1. Similarly one can
show that the same trajectory inverts the spin of initial
‘‘down’’ orientation. Thus, the motion around the loop
performs the NOT operation

UNOT ¼ 0 1
1 0

� �
: (6)

Other useful single qubit operations are the Hadamard
transformationUH of the basis states into their equilibrated
superpositions and the phase flip operation U�

UH ¼ 1ffiffiffi
2

p 1 1
1 �1

� �
; U� ¼ 1ffiffiffi

2
p 1 0

0 �1

� �
: (7)

The loop of Fig. 3 can be used as the Hadamard gate for the
spin ‘‘up’’ and ‘‘down’’ states redefined with respect to the
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FIG. 4 (color online). Same as Fig. 2 but for the NOT gate of
Fig. 3. The black [blue (dark gray)] solid curves show the x, (z)
positions.
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FIG. 5 (color online). Gate configuration (grey colors) for the
Hadamard gate. Blue (dark gray) solid lines show the electron
trajectory [electron starts from under e1 and goes to the right—
the direction of motion is marked with the blue (dark gray)
arrows]. The rectangular gate path is rotated by 45� with respect
to Fig. 3: z0 ¼ 1ffiffi

2
p ðxþ zÞ, x0 ¼ 1ffiffi

2
p ðx� zÞ.
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FIG. 3 (color online). Gate configuration (gray colors) for the
NOT gate. Blue (dark gray) solid lines show the electron trajec-

tory (electron starts from under e1 and goes to the right). Red
(light gray) symbols show the spin orientation near the corners of
the trajectory (�, � indicate ‘‘from the page’’ and ‘‘to the page’’
directions, respectively).
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direction bisecting the angle between x and �z axes.
Alternatively, one can keep the basis set and rotate the
electron trajectory (the electrode loop) by 45� in the (x, y)
plane. The electron trajectory in the Hadamard gate is
plotted in Fig. 5 in rotated coordinate system z0 ¼ 1ffiffi

2
p �

ðxþ zÞ, x0 ¼ 1ffiffi
2

p ðx� zÞ. As the initial condition for the

Hadamard gate simulation, we took the electron confined
below the e1 electrode in the ground-state with the spin
parallel to the z axis. The packet is set in motion to the right
by introducing a potential difference between e1 and e2
equal to�0:2 mV. Figure 6 shows the time dependence of
the spin average values. The spin initially oriented ‘‘up’’
h�zi ¼ 1, after closing the trajectory loop is set to the
‘‘right’’ h�xi ¼ 1. Similarly, the spin ‘‘down’’ h�zi ¼ �1
turns to the ‘‘left’’ at the end of the loop. Twofold rotation
around the loop is equivalent to the identity transform, i.e.,
the rotation by the full angle.

The phase-shift operation U� is performed by the elec-
trode configuration rotated by a 90� angle with respect to
the NOT gate of Fig. 3. The NOT quantum gate oriented as in
Fig. 3 performs the U� transformation for the ‘‘up’’ and
‘‘down’’ states redefined as parallel and antiparallel to
the x axis.

The spin rotation angle is proportional to the distance
traveled by the electron. In the presented simulations, the
side lengths of the rectangle formed by the electrodes was
set equal to �SO or �SO=2. Deviation of the length of the
segments of the ideal values will decrease the probability
of the operation below 1. However, the �SO values can be
experimentally calibrated by tuning the Rashba coupling
constant with the applied voltages. The proposed device
runs on a single-electron and does not require the presence
of dopants whose strong inhomogeneous field may locally
perturb the spin-orbit coupling constant [19]. The devices
proposed here use homogenous Rashba coupling in the
absence of the Dresselhaus interaction. For devices based

on zinc blende materials, one can still design electron
trajectories performing the spin operations for both cou-
plings present [20]. The dielectric constant in the nanoscale
devices may have a different value than in bulk materials.
However, the value of the constant affects only the strength
of the self-focusing effect and not the spin rotations.
We demonstrated that the controlled electron motion

around closed loops along induced quantum wires com-
bined with the spin-orbit coupling can be used to design
devices performing any single-spin rotation. The proposed
device is scalable, and since it runs without a microwave
radiation or high frequency electric fields, it offers an
independent control of many separate qubits.
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FIG. 6 (color online). Position of the electron packet as a
function of time for the Hadamard gate of Fig. 5 in the rotated
system of coordinates (x0, y0, z0). The black [blue (dark gray)]
solid curves show the x0, (z0) positions. The dashed curve show
the expectation value of the Pauli matrix operators defined with
respect to the x, y, z axes.
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