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The Gordian knot of density-functional theories for classical molecular liquids remains finding an

accurate free-energy functional in terms of the densities of the atomic sites of the molecules. Following

Kohn and Sham, we show how to solve this problem by considering noninteracting molecules in a set of

effective potentials. This shift in perspective leads to an accurate and computationally tractable descrip-

tion in terms of simple three-dimensional functions. We also treat both the linear- and saturation-

dielectric responses of polar systems, presenting liquid hydrogen chloride as a case study.
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Introduction.—The importance of inhomogeneous polar
molecular liquids, above all water, in the physical sciences
can hardly be overstated: as solvents they are ubiquitous in
soft condensed matter physics, biophysics, nanophysics,
and chemical physics. The associated phenomena include
hydrophobic interactions [1,2], protein folding [3,4], the
behavior of colloidal suspensions [5], and phase transitions
of confined liquids [6,7]. Because of the complex interplay
of hydrogen bonding, long-range polar interactions, and
short-range excluded volume effects, developing a trac-
table physical theory to describe the solvent in these sys-
tems remains a challenge [8].

Despite the importance, inherent interest, and extensive
experimental study of polar liquids, most existing theories
of the inhomogeneous molecular liquid either lack the
accuracy to describe the above phenomena in a quantita-
tively satisfying way or become computationally prohibi-
tive when applied to such complex problems. The
description of liquids from first principles via ab initio
methods may be accurate, but can only be applied to
relatively small systems [9]. Even classical molecular
dynamics requires rather long simulation times to sample
phase-space sufficiently to extract meaningful thermody-
namic averages [10]. This latter approach also suffers from
the well-recognized difficulty of designing potentials to
describe hydrogen-bonded liquids accurately [11].

An alternative approach is to start with the quantum
mechanical free-energy functional for both electrons and
nuclei and, by ‘‘integrating out’’ the electrons, to construct
a density functional in terms of atomic site densities alone.
These ‘‘classical’’ density-functional theories, which have
been successfully applied to the study of simple liquids
[12,13], provide a description of inhomogeneous physical
systems that is founded on a number of exact theorems
[14,15]. To apply this approach to the study of simple
liquids, a hard sphere reference system is usually aug-
mented by terms that capture weak long-range attractive
forces [16]. Unfortunately, for most liquids of interest, a
hard sphere reference system is a poor starting point be-
cause of the strong anisotropic short-range interactions

arising from the molecular structure and effects such as
hydrogen bonding.
To remedy this, Chandler and co-workers [17–19] intro-

duced a density-functional theory for molecular liquids in
terms of a set of densities, one for each ‘‘interaction site’’
on the molecule (typically atomic centers). However, the
construction of accurate free-energy functionals in such
theories is challenging due to the ‘‘inversion problem’’, the
difficulty of using only atomic site densities to express the
entropy associated with the geometric structure of the
molecules. Below, we show how this inversion problem
can be overcome by a Kohn-Sham-like change of variables
from site densities to effective potentials and how the
resulting functionals are both computationally tractable
and can capture the basic underlying physics of molecular
liquids, including dielectric screening effects.

Kohn-Sham approach.—The grand free-energy �ðniÞ of
a noninteracting gas of molecules is well known as a
functional of the relative potentials c �ðrÞ � ��ðrÞ �
��, where ��ðrÞ is the site-dependent external potential
and �� is a site-specific chemical potential,

�ðniÞ ¼ �kBTnr
Z

d3Mrsðfr�gÞe��
P

M
�¼1

c �ðr�Þ: (1)

Here, nr is the reference density at vanishing chemical
potentials, M is the number of interaction sites on the
molecule, and sðfr�gÞ, which describes the geometry of
the molecule, is the intramolecular distribution function.
For rigid molecules (zero internal energy), the entropy of

the atomic site densities is easily extracted from �ðniÞ.
Thus, to construct an exact density functional for the
entropy, even for the interacting system, one only need

express �ðniÞ as a functional of the site densities. More

generally, �ðniÞ is a key part of the interacting functional
directly analogous to the noninteracting kinetic energy
functional Ts½n� of Kohn and Sham [20]. Unfortunately,

(1) only gives �ðniÞ as a functional of the c �. To express

�ðniÞ in terms of site densities requires solution of

nðniÞ� ðrÞ ¼ ��ðniÞ=�c �ðrÞ as a set of M coupled integral
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equations for the c �ðrÞ in terms of the nðniÞ� ðrÞ. This con-
stitutes the ‘‘inversion problem’’ described above.

Chandler and co-workers have solved this inversion
problem analytically in terms of an infinite continued
fraction of convolutions for the diatomic case only [18].
The unwieldiness of this formal solution and its limitation
to diatomics, however, has led actual calculations to be
performed in the united-atom approximation, where, for
the noninteracting part of the functional, all of the sites of a
molecule are assumed to coincide at a single point [19].
Despite its crudeness, the resulting theory predicts quite
well the correct stable ice structure at nearly the correct
density [19]. However, by uniting the sites, this approxi-
mation cannot capture the dielectric response of an ideal
gas of polar molecules and so provides a poor starting point
for the study of dielectric effects.

The key observation which allows us to overcome the
inversion problem is that the free-energy of a noninteract-
ing molecular system, being a very complicated functional
of the site densities, is a very simple functional of the
relative potentials. This parallels the situation in electronic
density-functional theory, where there is no known accu-
rate functional for Ts½n�, the noninteracting (kinetic) en-
ergy, in terms of the density, but where this energy is easily
written exactly in terms of single-particle orbitals. It was
the transition from fully interacting electrons to a corre-
sponding set of fictitious noninteracting particles, as pro-
posed by Kohn and Sham [20], which allowed for the
construction of accurate density functionals for the inter-
acting electron gas. In the present case, the simplicity of
evaluation of the grand free-energy of noninteracting mole-
cules as a functional of the relative potentials suggests an
analogous change of variables, now from the site densities
to a set of effective relative potentials in which fictitious
noninteracting molecules move.

Mathematically, a pair of Legendre transformations
achieves this change of variables. Thermodynamically,

the Legendre transform �ðniÞ �PR
drc �n� equals the

intrinsic Helmholtz free-energy of the noninteracting sys-
tem. Adding the internal energy U due to intermolecular
interactions and the contribution of the physical external
potentials �� yields the full Helmholtz free-energy of the
interacting system. Finally, the second Legendre transfor-
mation subtracts

PR
drn��� to form the full interacting

grand free-energy � as a functional of the effective poten-
tials ��,

�¼�ðniÞ � XM
�¼1

Z
d3r½��ðrÞ���ðrÞþ���n�ðrÞþU½n�;

(2)

where n ¼ fn1ðrÞ; . . . ; nMðrÞg, the set of densities, is ex-
plicitly a functional of the effective relative potentials� ¼
f�1ðrÞ; . . . ;�MðrÞg via n�ðrÞ ¼ nðniÞ� ½��ðrÞ � ��ðniÞ=
�c �ðrÞ½��. The effective relative potentials that minimize
�½�� then determine the equilibrium site densities and

allow for the calculation of the various equilibrium prop-
erties of the liquid. We mention that minimization with
respect to the effective potential is known in the electron
structure context as the optimized potential method [21].
Construction of approximate functionals.—As usual

with density-functional theories, the construction of the
internal energy U is difficult. Again, we follow the lead
of Kohn and Sham and construct a free-energy functional
that reproduces established results for the homogeneous
phase in the limit of vanishing external fields. The
Ornstein-Zernike (OZ) equation gives information about
the analytic structure of U, in particular, it gives @2U, the
Hessian ofU with respect to the densities, as the difference
between the inverses of the full and noninteracting corre-
lation function matrices [22]. In the special case of the
homogeneous phase, translational invariance then turns the
OZ equation into a simple matrix equation in Fourier
space, with one component for each field.
From now on, we will limit the discussion to a special

class of liquids, which includes all diatomics and the liquid
of most interest, water. The liquids in this class have the
property that the lowest-order term in the long-wavelength
expansion of the Hessian of U½n� has the form

K��ðkÞ ¼
�

�

�� 1
� �ðniÞ

�ðniÞ � 1

�
4�

k2
q�q�; (3)

where q� are the partial site charges, � is the macroscopic

dielectric constant and �ðniÞ is the dielectric constant of a
system with intramolecular correlations only. This result
may be derived by expanding the interacting and noninter-
acting correlation functions as Eþ Fk2 þ . . . , where there
are no linear terms in k by rotational invariance, and E and
F are matrices of coefficients, with one combination of
coefficients from F giving the dielectric constant. In the
cases of molecules described either by two sites or by three
sites with a mirror plane symmetry, one can show that the
only combination of the coefficients in F which enters the
leading-order term in the OZ equation corresponds exactly
to the bulk dielectric constant. All liquids composed of
such molecules thus have the property that the long-
wavelength dielectric response can be built into the free-
energy functional without any knowledge of the long-
wavelength limit of the experimental correlation functions
(other than �).
In general, we may view the internal energy U as

expanded in a power series about the uniform liquid,
with all terms, except the quadratic part (whose Hessian
is given by (3) in the long-wavelength limit) gathered into
an excess part, Fex, which plays exactly the same role as
the exchange-correlation functional of Kohn-Sham theory:
it ensures proper bulk thermodynamic behavior and will
ultimately be treated in some approximate way. We note
that the constant term in the power series expansion of U
determines the bulk thermodynamics (which we include in
Fex) and the linear term vanishes in the uniform equilib-
rium state of the system. Putting this all together gives
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U½n� ¼ 1

2

XM
�;�¼1

Z
d3r

Z
d3r0n�ðrÞfK��ðr; r0Þ

þ C��ðr; r0Þgn�ðr0Þ þ Fex½n�; (4)

where C�� describes those parts of the Hessian @2U which

K fails to capture.
To approximate Fex, we first note that, in the case of zero

external fields, all densities are equal and the first quadratic
term (K) in (4) vanishes because of charge neutrality.
Anticipating that the matrix function C will be constructed
to vanish in the long-wavelength limit, Fex then captures
all the internal energy of the uniform phase and can be
expressed as Fex ¼ VfexðnÞ, with V being the volume and
n the average molecular density. Because of the presence
of multiple density fields, generalizing this expression to
the inhomogeneous case is more difficult than for the
analogous exchange-correlation energy in electronic struc-
ture theory. Also, because of the strong correlations in-
duced by excluded volume effects, purely local excess
functionals fail to describe the liquid state [23]. We there-
fore approximate Fex with a simplified ansatz in the spirit
of weighted density-functional theory [23], but generalized
to multiple species by allowing different weights bi� for the

various densities,

Fex½n� ¼
Z

d3r
X
i

pif
ex

�XM
�¼1

bi� �n�ðrÞ
�
; (5)

where we introduce the weighted densities �n�ðrÞ ¼R
d3r0ð�r20Þ�3=2 expð�jr� r0j2=r20Þn�ðr0Þ, with r0 being a

parameter ultimately fit to the experimental surface ten-
sion. To reduce to the correct form in the uniform case pi

and bi� must fulfill
P

ipi ¼ 1 and
P

M
�¼1 b

i
� ¼ 1.

To capture the behavior of the scalar function fexðnÞ, we
use a polynomial fit to various bulk thermodynamic con-
ditions. The condition that C vanishes in the long-
wavelength limit subsequently fixes pi and b

i
� and ensures

that C will be bandwidth limited and thus amenable to
numerical approximation. For a given r0, this then com-
pletely specifies our approximation to Fex. Next, relating
K þ Cþ @2Fex to the density-density correlation func-
tions through the OZ relation then gives the matrix func-
tion C for a given r0. Finally, we can determine r0 by
adjustment until calculations of the liquid-vapor interface
give the correct surface tension.

Hydrogen chloride.—We choose liquid hydrogen chlor-
ide as a model physical system exhibiting hydrogen bond-
ing and for which detailed experimental data are available,
including site-site correlation functions [24,25].

Assuming rigid intramolecular bonds, the distribution
function becomes sðr1; r2Þ ¼ �ðjr1 � r2j � BÞ=4�B2,

with the gas phase bond length B ¼ 1:275 �A taken from
experiment [25] and 1 and 2 referring to hydrogen and
chlorine, respectively. We then select the partial charges to
yield the experimental gas phase dipole moment [26],

resulting in q1 ¼ �q2 ¼ 0:171e with e being the funda-
mental charge. Then, we approximate the simple bulk
function fexðnÞ by a fourth-order polynomial with coeffi-
cients adjusted to (a) reproduce the bulk modulus of the
liquid phase and (b) to allow for coexistence of stable
liquid and vapor phases at the appropriate densities,
where the latter is treated as an ideal gas. Next, for the
excess free-energy functional, the requirement that the
matrix C vanishes in the long-wavelength limit fixes the
integrand in (5) to be ½3fexð �n1Þ þ 4fexðð �n1 þ �n2Þ=2Þþ
3fexð �n2Þ�=10, under the assumption that the constant
term (in an expansion in powers of k2) of the inverse
correlation function is proportional to that of the noninter-
acting case. Then, we determine C as described above
using the partial structure factor data for the uniform liquid
[24] and the macroscopic dielectric constant [27] as ex-
perimental inputs. Adjusting the smoothing parameter to

give the experimental surface tension [28] yields r0 ¼
4:55 �A.
Results.—As a test case, we study the behavior of liquid

hydrogen chloride at T ¼ 194 K, P ¼ 4:5 bar (chosen due
to availability of experimental correlation functions [24]),
which is in the liquid part of the phase diagram somewhere
near the triple point. Figures 1(a) and 1(b) show the equi-
librium density profiles which our theory predicts in a
parallel plate capacitor (described as an infinite square-
well potential for both species) in both moderate and strong
applied fields, respectively. For comparison, the figure also
shows the zero-field density profiles.
The zero-field profiles exhibit an extended gas phase

region up to a distance of �1 nm from the plates. This
‘‘lingering’’ gas phase region exists because molecules can
minimize the influence of the repulsive walls by leaving the
system and entering the reservoir at very little free-energy
cost. As soon as a relatively weak external electric dis-
placement D is applied, however, it becomes favorable for
the dipolar molecules to enter the capacitor, largely de-
stroying the gas phase region and resulting in an almost
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FIG. 1. Hydrogen- (thick dotted curves) and chlorine- (thick
solid curves) site density versus distance from hard wall in
(a) moderate and (b) high applied field. Reference results for
zero field given in both panels (thin solid curves).
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rigid shift of the density profiles towards the capacitor
walls for a large range of fields until the nonlinear dielec-
tric response regime is reached. Figure 1(a) shows an
example of this behavior for a relatively large field but
where the dielectric response is still fairly linear (� �
�pD ¼ 2:68, where p is the molecular dipole moment).
A dramatic qualitative change occurs in the strong field
case. Figure 1(b), computed at � ¼ 7:38, shows the typical
behavior in the high-field case. At large fields, the profile
for each species exhibits a sharp peak followed by strong
oscillations, where the peaks and oscillations are separated
by one molecular bond length (�0:12 nm) indicating that
they are the result of strong orientational ordering of the
molecular dipoles. The oscillations of the site densities
suggest an induced layering of molecules close to the
surface, which results from the reorganization of the
hydrogen-bond network in response to the increasing di-
polar alignment of the molecules. The wavelength of the
observed oscillations is about �0:3 nm, corresponding to
the length of the hydrogen bond [8].

The equilibrium site densities determine the induced
polarization. Figure 2 compares the polarization, computed
from our density-functional theory, to the result of self-
consistently screened nonlinear electrostatics, computed

by solving for the polarization P such that P ¼ PðniÞðD�
a�4�PÞ, where PðniÞðEÞ is the response of a gas of non-

interacting dipoles in a local field E and a� � �=ð�� 1Þ �
�ðniÞ=ð�ðniÞ � 1Þ ensures that for small D the correct linear
response is recovered. Figure 2 shows that our density-
functional theory not only reproduces the linear regime but
also captures saturation effects.

In conclusion, we have shown how a Kohn-Sham-like
change of variables yields a numerically efficient and
accurate density-functional theory for molecular liquids.
The resulting theory has the computational cost of the
problem of a noninteracting gas of molecules in a self-
consistent external potential. We have shown how to con-
struct a functional in this approach which captures the

coexistence of liquid and vapor phases, the surface tension
between these phases, and, for the liquid, the bulk me-
chanical properties, site-site correlation functions, linear
dielectric response, and self-consistent dielectric saturation
effects. Without modification, the current approach is
ready to be developed for the liquid of greatest scientific
interest: water.
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FIG. 2. Electric saturation fraction (P=Psat) versus applied
electric displacement (D): density-functional results (crosses),
nonlinear electrostatics (solid line), linear response (dashed
line).
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