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We develop a theoretical model to elucidate the nucleation of strained islands on patterned substrates.

We show that island nucleation is directed to the preferred sites by a much lower energy barrier and

smaller critical size. Strain relaxation directs island nucleation to the bottom of a pit rather than the top of

a ridge as commonly perceived, while large surface energy anisotropy favors nucleation at both places.

The theory explains some puzzling experimental results and provides useful guidelines for future

experiments.
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Understanding the nucleation process, a critical kinetic
step in material growth and phase transitions, is not only of
fundamental interest but also has significant technological
implications. For example, heteroepitaxial growth of
strained islands offers an attractive route to the fabrication
of quantum dots (QDs) [1]. To improve the uniformity of
QDs, one strategy is to convert the otherwise ‘‘stochastic’’
nucleation process into a ‘‘deterministic’’ one by directing
nucleation to the predefined surface sites via surface en-
gineering. This has been achieved by generating a surface
strain field from buried dislocation networks [2] or strained
islands [3], and by using steps [4] or patterned topographic
surface features [5–15].

Recent efforts have focused on using lithographically
patterned substrates [5–15], producing QD arrays with
some of the highest spatial and size uniformity. On a flat
substrate, island nucleation is inherently a stochastic pro-
cess, rendering a random spatial distribution that also
broadens the island size distribution. The key is to direct
island nucleation to the predesigned patterning sites, which
not only induces high spatial order of islands but also
improves their size uniformity. This approach appears in-
tuitively obvious, but the underlying physical mechanism
remains poorly understood.

Experiments to date have been done in a trial-and-error
manner. In particular, different patterns, e.g., mounds and
ridges [5–12] versus voids and pits [13–15], have been
used without a priori knowledge of which pattern works
best under which conditions. Experimental results are not
adequately explained. In this Letter, we develop a theoreti-
cal model to elucidate island nucleation on patterned sub-
strates answering two critical questions: (1) How do island
nucleation barrier and critical nucleus size on a patterned
substrate differ from those on a flat substrate? (2) What are
the physical parameters that control the preferred sites for
nucleation?

The theory of strained island nucleation on a flat sub-
strate has been well established [16–19]. In general, the
criticality of nucleation is determined by the competition
between strain energy and surface energy. There can be

also an edge energy term [17], but it is usually small; for
instance, it is negligible for the Ge island grown on Si [19].
Here, we formulate a calculation of island nucleation
barrier and critical size on patterned substrates.
We consider first a 2D model of the island on a sawtooth

surface pattern, as shown in Fig. 1(a). The surface pattern
is assumed to have a constant slope of angle ’, which may
or may not be a facet. The island is bound by two facets of
contact angle � � ’ with a base dimension 2l. The island
strain relaxation energy, i.e., the strain energy difference
between the island and the uniformly strained film, is
calculated using the Green’s function method within the
shallow-angle approximation [16]:

Ee ¼ ��2

2

ZZ
dxdx0�ðx� x0Þ@itðxÞ@jtðx0Þ: (1)

� is the bulk stress in the island, x and x0 denote the

FIG. 1 (color online). Schematic illustration of island nuclea-
tion on patterned substrates. (a) On a sawtooth pattern; (b) on the
apex of a concave surface; (c) in the valley of a convex surface.
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position along the surface, � is the Green’s function relat-
ing the displacement at x0 induced by a force at x, and tðxÞ
is the island thickness function.

Figure 2 illustrates the type of elastic forces (monopoles
vs dipoles) induced in a strained film by film thickness
variation and surface waviness. For constant film thickness
on a flat surface [Fig. 2(a)], no force is induced (no strain
relaxation). For changing film thickness on a flat surface
[Fig. 2(b)], forces are induced only on the film surface,
leading to monopole-monopole interaction. For constant
film thickness on a wavy surface [Fig. 2(c)], forces of the
same magnitude but opposing directions are induced at
both the film surface and the film-substrate interface, lead-
ing to dipole-dipole interaction. For changing film thick-
ness on a wavy substrate [Fig. 2(d)], both force monopoles
and dipoles are present. Since the monopole-monopole
interaction energy scales as lnðLÞ, where L is the lateral
dimension of the film (e.g., the size of an island), and the
dipole-dipole interaction energy scales as 1=L3, to the first-
order approximation, we will include only the force mono-
poles induced by the film thickness variation, i.e., @itðxÞ in
Eq. (1), and neglect the force dipoles induced by surface
waviness.

Solving Eq. (1), we obtain

Ee ¼ �"0Sðtan�� tan’Þ: (2)

"0 ¼ ð2 ln2Þ�2ð1� �2Þ=�Y is the scaled elastic energy
density, � is Poisson ratio, and Y is Young’s modulus. S ¼
l2ðtan�� tan’Þ is the island area (size). In deriving Eq. (2)
we consider that island can locate either on the top of the
apex [the left island in Fig. 1(a)] or at the bottom of the
valley [the right island in Fig. 1(a)] sitting centered at the
corner. For a given �, ’ may vary as �� � ’ � �, being
positive when island is on the apex and negative in the
valley.

The extra surface energy created by the island is

Es ¼ 2lð�f sec�� �w sec’Þ ¼ 2�S1=2ðtan�� tan’Þ1=2:
(3)

� ¼ ð�f sec�� �w sec’Þðtan�� tan’Þ�1; �f and �w are

surface energy of island facet and wetting layer, respec-
tively. The total island formation energy is then

E ¼ Ee þ Es

¼ �"0Sðtan�� tan’Þ þ 2�S1=2ðtan�� tan’Þ1=2: (4)

The strain relaxation (the first negative term) lowers the
energy favoring island formation, while the surface crea-
tion (the second positive term) increases the energy pre-
empting island formation; the competition of the two
defines a critical island size (Sc) and a energy barrier
(Ec) as

Sc ¼ ð�="0Þ2ðtan�� tan’Þ�1; Ec ¼ �2="0: (5)

The ’ ¼ 0 solutions reduce to the critical size and energy
barrier on a flat substrate.
The surface energy of the wetting layer (�w) is a func-

tion of surface slope, i.e., angle ’. We use a simple generic
form of �w ¼ �0ð1� � cosðn’ÞÞ [20]; � defines surface
energy anisotropy and n defines the angle of low-energy
facets. For the island facet to be the first low-energy facet
to appear beyond the flat surface, we have ’ ¼ � ¼ 2�=n
and �f ¼ �0ð1� �Þ. To reveal how critical size and en-

ergy barrier on a patterned substrate differ from those on a
flat substrate, we examine the dependence of Sc and Ec on
’ and �, as shown in Fig. 3. As a typical example, we take
n ¼ 32, representing the growth of the (105)-faceted Ge
hut island on Si(001) substrate [19]. For a given ’, it is
easy to show Sc, Ec / ð�2

0=�0Þ½A� B��2, where A and B
are positive constants. Thus, both Sc and Ec decrease with
the increasing � (see Fig. 3). This is because for larger �,
the island facet surface energy becomes much lower than
the wetting layer surface energy, so that the island can be
nucleated much easier with small surface energy cost.
For a given �, the situation is more complicated. If the

surface energy is isotropic (� ¼ 0 or � is very small), then
Sc and Ec are smaller in the valley than on the apex so that
valleys are preferred nucleation sites. It is because strain
relaxation is more effective for islands in the valley than on
the apex, as surface energy plays a minimal role for small
�. This may seem at first counterintuitive because hand-
waving argument would suggest strain relaxes more when
the island is on top of the apex. However, one should
realize that strain relaxation is achieved by the film thick-
ness variation, i.e., @itðxÞ in Eq. (1). If the film had a
constant thickness, the strain would be the least relaxed
even on a patterned surface [see Fig. 2(c)]. Then it is easy
to see in Fig. 1(a) that the island thickness variation is
largest when it is in the valley and smallest when it is on the
apex. Consequently, island strain is relaxed more in the
valley by a bigger geometric factor of ( tan�þ tanj’j) in
Eq. (2) than on the apex by a smaller factor ( tan��
tanj’j). This is consistent with a recent finite element
calculation [14] which showed that the strain energy of a
Ge island is lower in the pit than on the flat surface of Si. A

FIG. 2 (color online). Schematic illustration of elastic forces
generated in a strained film. (a) Constant film thickness on a flat
surface; (b) varying thickness on a flat surface; (c) constant
thickness on a wavy surface; (d) varying thickness on a wavy
surface.
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similar conclusion is drawn for a continuous strained film
on a wavy substrate [21].

If the surface energy is highly anisotropic (large �),
Fig. 3 shows Sc and Ec become smaller both in the valley
and on the apex than those on a flat substrate (’ ¼ 0). For a
given �, the larger the ’ is, the smaller Sc and Ec will be.
This indicates that if surface patterns are steeper, the
strained islands are more preferred to nucleate on the
apex or in the valley other than in the flat region.
However, the underlying mechanism is different in that
the island on the apex is only favored by surface energy
anisotropy, while the island in the valley is favored by both
strain and surface energy effects.

Besides on the apex or in the valley, we also considered
island nucleation on a slope (i.e., the sidewalls of a pat-
tern), shown as the middle island in Fig. 1(a). The island
formation energy is calculated as

E ¼ ��0S�ð�; ’Þ þ �S1=2	ð�;’Þ; (6)

where �ð�; ’Þ and 	ð�; ’Þ are complex geometric shape
factors and � ¼ ½sec�þ sin’ cscð�� ’Þ��f � ½cos’þ
sin’c tanð�� ’Þ��w. Equation (6) has the same form as
Eq. (4). Both energy terms on a slope fall in between those
on the apex and in the valley, which can be seen by compar-
ing their respective geometries. Consequently, critical size
and nucleation barrier on a slope can also be smaller than
those on the flat region. A previous analysis shows that
island-island interaction may favor island on a slope [22].

The real patterned surface may have a continuously
changing surface orientation instead of a constant slope.
Therefore, we further consider island nucleation on a

surface with a continuously varying ’, as shown in
Figs. 1(b) and 1(c). For simplicity, we assume that the
surface has a constant local curvature (
 ¼ 1=R) under-
neath the island, and numerically integrate the island total
energy. Note that for a given island facet angle, there exists
a maximum possible island size, or the surface slope would
be larger than the island facet slope on the apex.
Figure 4 compares the island formation energy as a

function of size for an island to nucleate on the apex
[Fig. 1(b)], in the valley [Fig. 1(c)], and on a flat substrate
(R ! 1). For small � [Fig. 4(a)], the nucleation barrier is
smallest in the valley and highest on the apex. For larger �
[Fig. 4(b)], the barrier on the apex becomes smaller than
that on the flat surface. For even larger � [Fig. 4(c)], the
barrier in the valley and on the apex becomes similar; both
are much lower than that on the flat surface. These general
trends are same as those in Fig. 3.
Although we have presented our theory with a 2D

model, a 3Dmodel predicts qualitatively identical behavior
[23]. Now, we apply our theoretical predictions to qualita-
tively explain some interesting and puzzling experiments.
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FIG. 4 (color online). Island formation energy (E) on a curved
surface as a function of island size (S), on the apex [red (or gray)
line], in the valley [blue (or dark gray) line], and on the flat
surface (black line). Ec and Sc are energy barrier and critical size
on the flat substrate, respectively. We use R ¼ 100 nm and
2�0=�0 ¼ 100 nm.

FIG. 3 (color online). Island nucleation critical size (a) and
energy barrier (b) as a function of � and ’. The size is in unit of
�2
0="

2
0 and barrier in unit of �2

0="0.
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One key prediction is that islands nucleate on a patterned
substrate with a smaller critical size and lower energy
barrier than those on a flat substrate, and the critical size
can be reduced by 1 order of magnitude (see Fig. 4). This is
consistent with experimental observations [5–15]. For ex-
ample, under identical growth conditions, InAs islands are
shown to nucleate with a much higher density on top of the
patterned GaAs stripes than on the planar surface [9].

The reduced critical size has an important implication
for the island growth mechanism: while nucleation mecha-
nism (such as Ge islands grown on Si) may be bypassed on
a flat substrate [20] due to too big a critical size (a few
thousands of atoms) [19] (the faceted islands form instead
via a barrierless transformation from the stepped mounds),
it is more likely to prevail with a much smaller critical size
(a few hundreds of atoms) on a patterned substrate.

Another interesting prediction is that the preferred loca-
tion for nucleation can be either on the apex or in the valley.
This explains the experimental success in directing island
nucleation both on top of the mounds or ridges [5–12] and
at the bottom of pits and voids [13–15]. The nucleation
inside pits and voids has been especially puzzling, because
these locations have been thought of as unfavorable sites
for strain relaxation. However, our analysis shows that is-
lands can in fact relax strain more effectively in the valley.

The theory shows that the preferred nucleation locations
may vary depending on the interlay between strain energy
and surface energy. In general, if strain relaxation is domi-
nant, then islands nucleate in the valley; if surface energy is
dominant, then islands nucleate in the valley and/or on the
apex. These trends may help explain the puzzling effect of
buffer layer growth on changing the island location [10].
The Si and/or SiGe buffer layers change the surface energy
anisotropy as well as partially relaxing the strain; the de-
tailed balance between these two effects alters the pre-
ferred nucleation sites. The high sensitivity of nucleation
sites to surface energy anisotropy (see Fig. 3) means that
local surface curvature (i.e., step density) can play a critical
role in directing island nucleation as experiments [12] have
indicated and islands can sometimes nucleate at sidewalls
of patterns [9] or at the edges [5,12] where step density is
high.

We have focused on nucleation of faceted strained is-
lands. In a classical work by Sholl and Fletcher [24],
nucleation of nonfaceted unstrained islands on a patterned
substrate was shown to be preferred in the pit using a
droplet model. It is interesting to note that for the faceted
strained islands the edge energy is usually negligible [19],
while for the nonfaceted unstrained islands the edge energy
can be significant on a flat surface [18] and its role on a
patterned surface needs further attention.

In conclusion, we have developed a theoretical model to
elucidate nucleation of strained islands on patterned sub-
strates, based on elastic Green’s function method. The
theory predicts that island nucleation is generally enhanced
on the patterned substrates due to a much smaller critical
size and energy barrier reduced by surface curvature effect

and more effective mode of strain relaxation. The interplay
of these two factors drives the preferred nucleation sites to
vary from the top of an apex to the bottom of a valley, and
to the sidewall of a slope. The theory explains the most
salient features of the existing experiments. It is suggested
that the patterned pits and trenches should be explored
further as an effective way to direct island nucleation and
self-assembly.
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