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Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show

that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other

maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the

bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding

that helicity is produced by nearly singular vortex interactions in classical Euler flows.
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Concentrated, tubular vortical regions are commonly
observed in turbulent flows. These structures are important
in the dynamics; for example, they enhance mixing and
diffusion. The role which they play in determining turbu-
lence statistics (spectra, intermittency) is the subject of
much study [1]. If the axes of tubular vortex structures
are interpreted as the skeleton of turbulence, then the
knottedness of the axes characterizes the topology, and
vortex reconnections [2] are the critical events which
change this topology. This idealized picture becomes real-
ity if one moves from ordinary fluids to superfluids (liquid
4He and 3He, atomic Bose-Einstein condensates, and neu-
tron stars). The reason is that in superfluids quantum
mechanics constrains any rotational motion to ultrathin
vortex filaments whose core radius and circulation are
fixed, and turbulence takes the form of a tangle of such
discrete filaments [3]. Recent experimental, theoretical,
and numerical studies have revealed similarities between
ordinary turbulence and superfluid turbulence [4], such as
the same Kolmogorov �5=3 energy spectrum [5] and the
same temporal decay law of the vorticity [6].

This Letter is concerned with vortex reconnections and
vortex stretching in superfluid turbulence. The importance
in He II of vortex reconnections and its scaling laws [7] was
first appreciated by Schwarz [8], who developed the re-
connecting vortex filament model; later, the existence of
reconnections was confirmed by Koplik and Levine [9]
using the nonlinear Schroedinger equation (NLSE) model.
Vortex reconnections are associated with the dissipation of
superfluid kinetic energy in the limit of absolute zero [10],
either directly [11] or via a kelvin wave cascade [12].
Recently, individual vortex reconnections have been de-
tected in experiments [13]. As recognized by Procaccia and
Sreenivasan [14], the occurrence of the �5=3 law in su-
perfluid turbulence is surprising if one notices that vortex
stretching, usually recognized as an important mechanism
to transfer energy across length scales, is absent because
the radius of the superfluid vortex core is fixed. A possible
solution of the puzzle is that some filaments are organized
in vortex bundles, which have indeed been noticed in the
most recent numerical simulations of superfluid turbulence

[15]. Clearly, stretching occurs if the relative position of
vortex strands within a bundle changes during the
evolution.
In a first set of numerical experiments we use the model

of Schwarz [8]. Let the space curve sð�; tÞ represent a
vortex filament where � is arclength and t is time. The
self-induced velocity vsi of the vortex at s is

v si ¼ ds

dt
¼ � �

4�

I ðx� zÞ
jx� zj3 � dz; (1)

where � is the quantum of circulation and the Biot-Savart
integral is suitably desingularized [8]. The numerical
method to evolve configurations of vortex filaments has
been described elsewhere [8,16]. Here it suffices to say that
the filaments are discretized into a large, variable number
of points N depending on the local curvature: points are
removed in regions where filaments straighten and are
added where the local radius of curvature becomes smaller.
The time evolution is based on a 4th order Runge-Kutta
scheme with variable time step �t, which depends on the
current minimum distance �min along points, which deter-
mines the frequency of rotation of the fastest kelvin wave
perturbation. If two vortex strands become closer to each
other than the local discretization along filaments, then,
consistently with the orientation of the filaments, our nu-
merical algorithm reconnects the strands [17], provided
that the total length is decreased [18]. This condition [19]
mimics the small kinetic energy losses at vortex reconnec-
tions discussed in Ref. [11]. We also checked that, with our
algorithm, the reconnection condition used by Schwarz [8]
is satisfied [20].
Using this model, we study the interaction of two bun-

dles of a given number M of (initially) straight parallel
vortex strands, set (initially) at 90� to each other. Let D be
the distance between the axes of the two bundles and A be
the radius of each bundle. The calculation is performed in a
cubic periodic box �B � x; y; z � B. A typical result for
M ¼ 7, A ¼ 0:0417 cm, D ¼ 3A, and B ¼ 1 cm is shown
in Fig. 1. The initial position of vortex strands within the
same bundle is symmetric: in this case we place six vor-
tices at the corner of a hexagon and one vortex in the
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middle. In the absence of the second bundle, the vortex
strands of the first bundle would rotate around each other in
a time scale � of the order of 10 s because they are parallel.
With two bundles, the interaction makes them to bend in
the direction of each other, until, at time t1 � 6:7 s, the first
reconnection occurs. The successive evolution involves the
reconnections of all strands at times t2 � 16:4 s, t3 �
21:0 s, t4 � 23:6 s, t5 � 27:4 s, t6 � 52:0 s, and t7 �
65:9 s, after which the two bundles separate from each
other (Fig. 1, bottom right) and move away.

Similar calculations with different parameters show that
the last reconnection (at which the remaining vortex bridge
breaks, and the bundles become free from each other)
usually takes longer than the first few reconnections.
Calculations also show that, after the first reconnection,
the vortex strands develop kelvin waves of large amplitude.
During the process, the total vortex length L increases by
about 40%, as shown in Fig. 2. Figure 3 shows the average
inverse radius of curvature, h1=Ri, obtained by computing
jd2s=d�2j at each point sj (j ¼ 1; . . . ; N) and then averag-

ing over all points. To cope with the increase in L and
decrease of hRi, the number of points (initially N ¼ 700)
grows with time, up to N ¼ 4191, when we stop this
particular calculation. Figure 4 shows normalized histo-
grams (probability density functions) of the average in-
verse curvature computed at different times: the formation
of the kelvin wave cascade is evident in the development of
a tail of the distribution at larger and larger times. All these
results were confirmed by further calculations withM ¼ 5
and 11 strands. If the number of strands of the first bundle

is different from the number of the second bundle, the two
bundles reconnect and move away as recognizable struc-
tures, although they are not fully separated as some vortex
strands remain uncompensated. The uncompensated lines,
deformed by the combined velocity field of the two bun-
dles, may undergo further reconnections later, creating
randomness in between the bundles, as visible in Ref. [15].
To make sure that our result does not depend on the

reconnection algorithm, we study the interaction of vortex
bundles by solving the NLSE, also called the Gross-
Pitaevksii equation:

2i
@c

@t
¼ �r2c þ jc j2c � c : (2)

The NLSE is a convenient model of superfluid He II [21];
for example, Koplik and Levine [9] used it to confirm
Schwarz’s insight that quantized vortices reconnect.

Equation (2) is written in terms of @=
ffiffiffiffiffiffiffiffiffiffi
2mE

p
(the coherence

length) as unit of space, 2E=@ as unit of time, andmE=V as
unit of density, where m is the mass of one boson, V the
strength of the interaction between bosons, and E the
energy per boson. The calculation is done using a 5th order
Runge-Kutta-Fehlberg method (with typical time step of
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FIG. 2 (color online). Total vortex length L versus time t
corresponding to Fig. 1.
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FIG. 3 (color online). Average inverse radius of curvature
h1=Ri versus time t corresponding to Fig. 1.

z

x

y

z z

x

y

z

z

x

y

z z

x

y

z

z

x

y

z z

x

y

z

(a) (b)

(c) (d)

(e) (f)

FIG. 1 (color online). Reconnection of two bundles of seven
vortex strands each. (a) t ¼ 0 s, (b) t ¼ 7:13 s, (c) t ¼ 23:58 s,
(d) t ¼ 36:27 s, (e) t ¼ 61:49 s, (f) t ¼ 80:35 s.
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the order of 0.01) using 2563 grid points and reflective
boundary conditions.

In a second set of calculations, we thus solve the NLSE
in a cubic box�128 � x; y; z � 128. The initial condition
consists of two bundles of radius A ¼ 8 and distance D ¼
3A between the axes of the bundles. Each bundle contains
M ¼ 7 vortices (six at the corners of a hexagon and one in
the middle). The time sequence, shown in Fig. 5, confirms
the previous result that vortex bundles maintain their iden-
tity and reconnect with each other. Note the emission of
small vortex rings in the last image. As in the previous
calculation, large amplitude kelvin waves are generated.
Figure 6 shows that at first L increases with t, then, when
the bundles have moved sufficiently away from each other,
L saturates; the relative increase of L is about 30%, con-
firming the intensification of vorticity. The relation be-
tween energy and length is important; it is common in
the literature to state that the energy per unit length of
vortex line is ½�s�

2=ð4�Þ� lnðb=aÞ where �s is the super-
fluid density and b is an upper cutoff (the radius of the
container or the distance to the next vortex), but this
relation is valid only for a straight vortex of course. The
NLSE model allows one to determine the energy more
precisely than the vortex filament model: in our calculation
the total mass and the total energy are conserved within
1 part in 103 and 1 part in 104, respectively. Further
calculations withM ¼ 5 and 9 strands confirm our results.

The above results refer to temperature T ¼ 0. If T > 0
the motion of a vortex filament is governed by Schwarz’s
equation

ds

dt
¼ vsi þ �s0 � ðvn � vsiÞ � �0s0 � ½s0 � ðvn � vsiÞ�;

(3)

where s0 ¼ ds=d� is the unit tangent at s, vn is the normal
fluid velocity, and � and �0 are known temperature depen-
dent coefficients resulting from the mutual friction be-

tween the vortex lines and the normal fluid [22]. In a
third set of calculations we find that, at T ¼ 1:65 K (the
typical temperature of many experiments), with vn ¼ 0,
bundle reconnections are still possible, although with much
less helical disturbances, as shown in Fig. 7, in agreement
with calculations [17] which show that at T > 0 the vortex
tangle is much smoother than at T ¼ 0. We do not repeat
this calculation with the NLSE model because there is not
yet a consensus on how to generalize the NLSE to finite

FIG. 5 (color online). Reconnection of two bundles of seven
vortices each computed by solving the dimensionless NLSE. The
figures show density isosurfaces at the level 0.25 (of the unit bulk
density away from vortices) at different times t. The numerical
resolution of the vortex core is such that at 0.25 density level
there are about 3 grid points within a vortex core, and at 0.90
density level there are about 15 grid points. Top right: t ¼ 110;
middle left: t ¼ 240; middle right: t ¼ 320; bottom
left: t ¼ 450; bottom right: t ¼ 800.
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FIG. 6. Dimensionless vortex length L versus dimensionless
time t corresponding to Fig. 5.
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FIG. 4 (color online). Probability density function of the in-
verse radius of curvature at different times, corresponding to
Fig. 1. From left to right, the times are t ¼ 7:13 s (solid red
curve), t ¼ 23:58 s (long-dashed green curve), t ¼ 36:27 s
(dashed blue curve), t ¼ 61:49 s (dotted purple curve), t ¼
80:35 s (dash-dotted light blue curve)
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temperatures, although many approaches have been pro-
posed [23].

We conclude that vortex bundles are structurally stable
structures, in the sense that they survive a time longer than
their characteristic time �, and travel a distance larger than
their size A, consistently with results for bundles of vortex
rings [24]. Remarkably, vortex bundles survive reconnec-
tions with other bundles without disintegrating, but rather
amplifying their vortex length. Finally, the coiling of the
vortex strands which is triggered by bundle reconnections
confirms results of Holm and Kerr [25] about the genera-
tion of helicity in nearly singular vortex interactions of the
Euler equation.

C. F. B. is indebted to W. F. Vinen for discussions.
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FIG. 7 (color online). Comparison between bundle reconnec-
tions at T ¼ 0 K (left, corresponding to � ¼ �0 ¼ 0) and at T ¼
1:65 K (right, corresponding to � ¼ 0:111 and �0 ¼ 0:014 37).
The initial condition is the same for both calculations. The times
(left, t ¼ 86:9 s; right, t ¼ 58:1 s) are chosen so that in each
case the bundle reconnection has proceeded to the point that only
two vortex strands are still part of the initial bundle.
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