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We present strong theoretical evidence that a Larkin-Ovchinnikov (LOFF/FFLO) pairing phase is

favored over the homogeneous superfluid and normal phases in three-dimensional unitary Fermi systems.

Using a density functional theory (DFT) based on the latest quantum Monte Carlo calculations and

experimental results, we show that this phase is competitive over a large region of the phase diagram. The

oscillations in the number densities and pairing field have a substantial amplitude, and a period some 3 to

10 times the average interparticle separation. Within the DFT, the transition to a normal polarized Fermi

liquid at large polarizations is smooth, while the transition to a fully paired superfluid is abrupt.
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The BCS mechanism for fermionic superfluidity is
rooted in the notion of pairing: Can superfluidity survive
in polarized systems with unequal numbers? This question
remains largely unanswered, even though it is fundamental
to many forms of matter, including superconductors, nu-
clear matter, and high density QCD. The prospect of ob-
serving exotic polarized superfluids has been revived in
two-component cold-atoms gases with s-wave interac-
tions, especially in the unitary limit where the scattering
length diverges: jaj ! 1. Here, the physics is universal,
and inherently strongly coupled, depending solely on the
densities. These systems are experimentally tenable (see
Ref. [1] for a review), and exhibit a remarkable diversity of
polarized phases.

Clogston and Chandrasekhar [2] noted that the normal
phase competes with BCS superfluidity when the chemical
potential difference between the species becomes compa-
rable to the energy gap. Kohn and Luttinger [3], however,
showed that interactions render Fermi surfaces unstable at
sufficiently low temperatures, suggesting pairing of higher
angular momenta. This effect is exponentially suppressed
in weak coupling, but may be strong enough in unitary
gases to support symbiotic p-wave superfluids [4]. Another
proposal by Fulde and Ferrell (FF) [5], and Larkin and
Ovchinnikov (LO) [6]—anisotropic or inhomogeneous po-
larized superfluids, widely referred to as LOFF or FFLO
states—have also been vigorously sought (see [7] for re-
views), but firm results have been sparse: Experimentally
there have been claims of quasi–two-dimensional FFLO
states in heavy-fermion superconductors [8], but no 3D
realizations have been reported. Other proposals include
deformed Fermi surfaces [9] and gapless (breached pair)
superfluids [10].

We present here strong evidence that an inhomogeneous
Larkin-Ovchinnikov (LO) state [6] may be realized in cold
polarized unitary Fermi gases. Our approach is novel in
several respects: (1) it is the first calculation to find a
completely self-consistent LO solution in three dimen-
sions; (2) the calculation is based on a density functional

theory (DFT) incorporating the best Monte Carlo calcula-
tions and measurements of the unitary Fermi gas; and
(3) includes both pairing and self-energy correlations.
Previous calculations of LO states have not been fully

self-consistent, often relying on approximate forms of
spatial variations, or uncontrolled Ginzburg-Landau ex-
pansions (see, e.g., Refs. [7,11,12]). Furthermore, self-
consistent treatments are typically based on mean-field or
Bogoliubov–de Gennes (BdG) calculations, which do not
properly account for many-body effects such as the
Gorkov–Melik-Barkhudarov corrections [13] that lead to
significant decreases in the pairing gap. Finally, most
calculations account for only the pairing condensation
energy, which is exponentially suppressed in weak cou-
pling, while the LO state has density variations that can
significantly change the unsuppressed normal correlation
energy (‘‘Hartree’’ terms). Mean-field and BdG calcula-
tions neglect these crucial correlation contributions:
Without them, LO states are not competitive at unitarity.
According to the theorems of Hohenberg and Kohn, a

DFT exists for any system of fermions. At unitarity, the
structure of the functional is strongly constrained by di-
mensional arguments, and thus its determination is greatly
simplified. The remarkable accuracy of this approach for
symmetric systems—as demonstrated in Ref. [14]—gives
us the confidence to extend the approach to polarized
systems. To model the polarized unitary Fermi gas, we
use an asymmetric (ASLDA) generalization of the super-
fluid local density approximation (SLDA) employed in
Ref. [14], expressed in terms of the following densities:

naðrÞ ¼
X
En<0

junðrÞj2; nbðrÞ ¼
X
0<En

jvnðrÞj2;

�aðrÞ ¼
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where unðrÞ, vnðrÞ, and En are the quasiparticle wave
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functions and energies [14]. We use the same functional
form as Ref. [14], but allow the parameters to depend on
the local asymmetry xðrÞ ¼ nbðrÞ=naðrÞ. The resulting
ASLDA energy density EðrÞ has the form

EðrÞ ¼ @
2

2m
½�aðrÞ�aðrÞ þ �bðrÞ�bðrÞ� þ geffðrÞj�ðrÞj2

þ 3ð3�2Þ2=3@2
10m

½naðrÞ þ nbðrÞ�5=3�½xðrÞ�; (2)

where �aðrÞ ¼ �½xðrÞ� and �bðrÞ ¼ �½1=xðrÞ� are the in-
verse effective masses in units of m�1 and defined in terms
of the single function �ðxÞ, �ðxÞ ¼ �ð1=xÞ parametrizes

the normal interaction, and ðna þ nbÞ1=3=� ¼ 1=geff þ�
defines the effective coupling geff that is regulated with the
cutoff � as described in Refs. [14,15]. The forms of �ðxÞ
and �ðxÞ are well constrained by Monte Carlo data, as
described below and in Ref. [15]. The equations for the
quasiparticle wave functions unðrÞ and vnðrÞ follow by
minimizing the grand-canonical functional

� ¼ �
Z

d3rP ðrÞ ¼
Z

d3r½EðrÞ ��anaðrÞ ��bnbðrÞ�;

where �a;b are the chemical potentials corresponding to

the two fermion species, and P ðrÞ is the local pressure.
We must now specify the forms of �ðxÞ and �ðxÞ. First

we analyze the symmetric superfluid phase as described in
Refs. [14,15]. By matching the Monte Carlo values [16–
19] for the parameters � ¼ ESF=EFG ¼ 0:40ð1Þ, 	 ¼
�="F ¼ 0:504ð24Þ, and the single quasiparticle excitation
spectrum, we determine the inverse effective mass �ð1Þ �
1:09ð2Þ, the constant ��1 ¼ �0:091ð8Þ, and the implied
energy of the symmetric normal phase �N ¼ EN=EFG ¼
�ð1Þ þ �ð1Þ ¼ 0:57ð2Þ. In Ref. [14] it was erroneously
stated that �ð1Þ could be extracted from the values of �
and 	 alone. A more careful analysis shows that the
quasiparticle dispersion [17] must also be fit, resulting in
the modified SLDA parameters presented here. The inverse
masses �a;b are also known for the fully-polarized gas. The

majority species is unaffected, whereas the minority spe-
cies has the effective ‘‘polaron’’ mass m=m� � 1:04ð3Þ
[20,21], constraining the endpoints �ð0Þ ¼ 1 and �ð1Þ ¼
0:96ð3Þ. To determine the function �ðxÞ, we consider the
energy of the interacting normal state, setting � � 0. This
has been well constrained by Monte Carlo calculations
[16,20], and, along with the parametrization of �ðxÞ, a fit
to this data uniquely specifies the function �ðxÞ (see
Fig. 1).

In this Letter, we consider only the simplest LO states,
with spatial modulations in a single direction (z). Unlike
the FF state [5], the LO state [6] does not break time-
reversal invariance, and thus belongs to a different sym-
metry class, as was emphasized by Yoshida and Yip [11].
We do not consider FF states here as they are typically not
competitive with the LO states. (FF states break time-

reversal invariance, and require additional terms in (2) to
restore Galilean invariance [14,15].)
The self-consistency equations are solved by discretiz-

ing the Hamiltonian along z with a discrete variable rep-
resentation (DVR) basis [22] of period L, while integrating
over the perpendicular momenta and the Bloch states. Our
quasiparticle wave functions thus satisfy the conditions
unðx; y; zþ LÞ ¼ ei
nunðx; y; zÞ, vnðx; y; zþ LÞ ¼
ei
nvnðx; y; zÞ, and are plane waves in the (x, y) plane.
We minimize the truncation error due to the finite DVR
basis set by using a smoothed version of the hybrid strategy
[23], summing discrete states with energies less than a
cutoff Ec, while integrating over the remaining higher-
energy semiclassical states.
We start by specifying chemical potentials �a and �b,

and an ansatz for �ðzÞ / sinð2�z=LÞ containing a node at
z ¼ 0, and then use a Broyden iteration scheme [24] to find
a self-consistent solution. The choice of basis and iteration
preserve the node at z ¼ 0, converging to either a self-
consistent LO state, or degenerating to a homogeneous
normal state with �ðzÞ ¼ 0 everywhere.
The resulting self-consistent states depend on the exter-

nal parameter L. To find the physical LO state, we vary L to
find the spontaneously chosen length scale L ¼ LLO that
minimizes the potential � (maximizes the average pres-
sure P ). The search is aided by the relationship
L@P=@L ¼ 2E � 3P between L, the average pressure,
and the energy density [15], ensuring the unitary relation-
ship P ¼ 2

3 E is satisfied by the physical state.

At unitarity, one may fully characterize all stable phases
by the single parameter y ¼ �b=�a as described in
Ref. [25]. We use the grand-canonical ensemble, where

x = nb/na

g
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FIG. 1 (color online). The dimensionless convex function gðxÞ
[25] that defines the energy density Eðna; nbÞ ¼ 3

5
@
2

2m ð6�2Þ2=3 �
½nagðxÞ�5=3. The points with error-bars (blue) are the
Monte Carlo data from Ref. [20]. The fully paired solution
gð1Þ ¼ ð2�Þ3=5 is indicated to the bottom right, and the recent
MIT data [26] are shown (light �) for comparison. The phase
separation discussed in Ref. [20] is shown by the Maxwell
construction (thin black dashed line) of the 1st-order transition
y ¼ yN-SF in Fig. 2. The LO state (thick red curve) has lower
energy than all pure states and phase separations previously
discussed. The Maxwell construction of the weakly 1st-order
transition y ¼ yLO-SF in Fig. 2 is shown by the thick dashed line
(red).
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only pure phases appear, and which properly accounts for
the phase separation that occurs at 1st-order transitions
(kinks in hðyÞ, discontinuities in h0ðyÞ: see Fig. 2). We start
by describing the homogeneous and isotropic states sup-
ported in the ASLDA functional: For y < y0 [25], the
system is a fully-polarized noninteracting Fermi gas
(Na); between y0 < y< yN-SF the highest pressure corre-
sponds to a partially polarized two-component Fermi gas;
and above yN-SF < y < 1, the fully paired superfluid (SF)
has the highest pressure. The point yN-SF, where the pres-
sures of the partially polarized normal and fully paired
superfluid states are equal, is where the phase separation
discussed in Ref. [20] would occur. Here, the competition
to LO from the normal and superfluid states is minimized,
and the LO state is most likely to occur. For y > 1, the
picture is reversed with the species a $ b exchanged. Our
ASLDA parametrization does not admit any stable homo-
geneous gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive LO solutions for
a large range of the parameter y 2 ðyLO-N; yLO-SFÞ with
finite periods in the range LLO-N � L � LLO-SF. At yLO-N ,
the transition appears to be second order, with

maxfj�ðzÞjg ! 0 vanishing smoothly from the LO phase
to the normal phase, while at yLO-SF, the order parameter
abruptly looses its spatial oscillations at a finite period
LLO-SF. Because of the presence of a node in �ðzÞ, the
only possibility for a smooth transition here would be for
the period to diverge LLO-SF ! 1; thus, this transition
appears to be weakly first order. The remaining normal
states between y0 < y< yLO-N would be susceptible to the
Kohn-Luttinger instability, and are candidates for the sym-
biotic p-wave superfluids discussed in Ref. [4]. To study
this possibility requires an extension of the ASLDA.
Figure 3 shows the typical structure of a LO state. The

pairing amplitude increases smoothly from zero at yLO-N,
where the profile is almost sinusoidal, to a critical value
slightly less than �0 at yLO-SF, while the minority compo-
nent exhibits large oscillations that break translation in-
variance, giving the LO state the crystalline properties of a
quantum solid. The majority component exhibits much
smaller oscillations because the larger local kinetic energy
density suppresses gradients. These fluctuations induce
large oscillation in the mean-field potentials (not shown),
and have a significant impact on the normal correlation
energy. For this reason, all the terms in the energy density
functional are critical for a proper description of the LO
phase.
If no other phases compete, one should observe that the

LO-SF transition coincides with the termination point y1 of
the partially polarized phases PPa [25]: yLO-SF ¼ y1. A
more complicated crystalline LO state with modulations
in all three directions may further increase the average
pressure, making y1 > yLO-SF. Current errors of the current
Monte Carlo calculations and experiments do not allow us
to distinguish between these two cases. These results are
summarized in Fig. 2, where it can be seen that these
periodic LO solutions occupy a substantial portion of the
phase diagram, and lead to a significant increase in the

y = µb/µa

h(
y)
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FIG. 2 (color online). The dimensionless convex function hðyÞ
[25] that defines the average pressure P ð�a;�bÞ ¼ 2

5 ð2m@2 Þ3=2 �
½�ahðyÞ�5=2=ð6�2Þ is constrained to the thin dotted triangular
region [25]. The interacting normal state pressure [20] defining
our ASLDA functional constrains this further (thin blue line),
and displays a 1st-order transition at yN-SF where normal and SF
phases could coexists (Maxwell construction in Fig. 1). The LO
state has an even higher pressure (thick red line), replacing much
of this region, including the former yN-SF transition. The y
dependence of the amplitude of the pairing field � ¼
maxfj�ðzÞjg and the period L are shown inset. Sample profiles
for the states marked � are shown in Fig. 3. Units are fixed in
terms of �� ¼ ð�a ��bÞ=2 [28].
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FIG. 3 (color online). A single LO period showing the spatial
dependence of the pairing field �ðzÞ (top) and the number
densities of the majority (dotted) and minority (solid) species
(bottom) at the values of y 2 ðyLO-N; yLO-SFÞ marked by � in
Fig. 2. Units are fixed in terms of �� [28].
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average pressure. The Legendre transformed results have
been included in Fig. 1 to facilitate comparisons with the
Monte Carlo data [20] and recent experiments [26].

In conclusion, we have shown that the ASLDA provides
a valuable tool for quantitatively evaluating inhomogene-
ous phases. By incorporating the latest nonperturbative
data about unitary Fermi gases, we have presented strong
evidence that a new form of matter, such as a crystalline
LO phase, is waiting to be found in the partially polarized
regime of cold unitary Fermi gases. This would be the first
example of a Fermi supersolid at unitarity, and with the
large pairing gap, there is a good chance of successfully
studying this state with cold atoms. In the experiments to
date, the shells where LO phases may exist are too thin to
allow for a complete LO period L. However, traps can be
adjusted so that the LO phase will occupy a larger spatial
region, allowing for several LOFF oscillations to occur.
Unlike LO in weak coupling, the amplitude of the density
fluctuations in the minority component is large and com-
parable to that of vortices [27] in unitary gases. This will
provide the most direct signature of unitary supersolid
matter, and an clean way to study the LOFF phase.
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