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Cyclotron maser radiation is important in both laboratory devices such as gyrotrons and in space

physics applications to phenomena such as auroral kilometric radiation. To understand the behavior,

especially in the latter case where there is generally a localized region of instability, requires an

understanding of how such instabilities behave in an inhomogeneous plasma. Here we consider, for

simplicity, a simple ring distribution of electrons in either a step function variation of magnetic field or a

continuous gradient. In each case we show that there can exist localized regions of instability from which

waves, growing in time, can be radiated outwards.
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Cyclotron maser instabilities are of importance in vari-
ous astrophysical contexts such as planetary radio emis-
sion, for example, auroral kilometric radiation (AKR) [1–
3], solar decimetric radiation [4], and in recently discov-
ered emissions from rotating stars including periodic emis-
sion [5–7], astrophysical shocks [8], and blazars [9]. It has
been argued in a number of previous papers that AKR and
similar phenomena are likely to be produced by a distri-
bution with a horseshoe or crescent shape in velocity space
[10–12] and we have collaborated in setting up an experi-
ment in which an electron beam moving along converging
magnetic field lines produces a horseshoe distribution
[13,14]. This experiment has produced radiation for which
the spectral properties and the conversion efficiency from
beam energy to radiation match those observed in AKR. In
this paper we look at some effects of plasma nonuniformity
on cyclotron maser instabilities. One long-standing prob-
lem in studies of cyclotron masers is how radiation, gen-
erally observed to be generated below the local cyclotron
frequency, gets onto the branch of the dispersion relation
which connects to vacuum propagation. It evidently does,
since the AKR radiation is observed by satellites above the
wave generation region, although the cold plasma disper-
sion curve goes to a cutoff at or above the cyclotron
frequency and does not connect to the branch below the
cyclotron frequency [15]. We shall show that the topology
of the dispersion curves may be different in a plasma with
an electron distribution showing a cyclotron maser insta-
bility and look at some properties of localized instabilities
in an inhomogeneous plasma. Because of the complexity
of the dispersion relation for a horseshoe distribution
[10,16] we consider a system with a simple ring distribu-
tion of the form fð�k; �?Þ ¼ n0�ð�kÞ�ð�? � �0Þ. Such a

distribution has been considered in the literature on gyro-
trons [17,18] (and references therein), and also in the space
physics literature [8]. While it might be a reasonable
representation of reality in the gyrotron, a monoenergetic
distribution of this sort is perhaps less likely in the space

plasma context. It is, however, simpler to treat since it gives
rise to a simple algebraic dispersion relation. We shall
show that in a nonuniform plasma it has some interesting
and perhaps surprising properties which may cast some
light on how more complex cyclotron maser instabilities
might behave.
The dispersion relation for the ring distribution can

readily be obtained by sustituting the ring distribution
into the general dispersion relation as given, for example,
by Stix [15]. Since relativistic effects play a crucial role in
cyclotron maser instabilities the relativistic dielectric ten-
sor elements must be used. We also make the approxima-
tion that the wave frequency is around the cyclotron
frequency. The result is, for propagation parallel to the
ambient magnetic field,
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FIG. 1. The dispersion relation for parallel propagation for a
ring distribution with � ¼ 1:02 and !ce

�!pe
¼ 10.
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Dispersion curves for the first case are shown in Figs. 1
and 2. The same qualitative behavior is seen for perpen-
dicular propagation, with a purely real branch connecting
the two unstable branches. This branch is not shown in the
paper of Chu and Hirschfield [17] or in the later review by
Chu [18] although it does appear in the paper by Pritchett
[2]. It is clear that it must appear since the complex roots of
the dispersion relation, which occur in conjugate pairs,
must connect to pairs of real roots.

To begin our discussion of nonuniform plasmas we
consider the case in which there is a region 0< x< L in
which the wave frequency is close to the cyclotron fre-
quency and on each side regions in which it is well away
from the cyclotron frequency, the variation of the disper-
sion properties with density being less important in the
regime we are looking at. This is most realistically realized
for perpendicular propagation where we can think of hav-
ing discontinuities in the magnetic field strength along the
direction of propagation. Now we note that away from the
cyclotron resonance, the dispersion curves in a low density
plasma are very close to those for a vacuum. For simplicity
we suppose, therefore, that the dispersion relation outside
the interval [0, L] is just ! ¼ kc. Our objective is to
investigate whether solutions can be found in which the
mode grows in time and on each side of the slab there is an
outward propagating wave. Such a solution represents a
locally unstable layer radiating energy away on each side.
So, we look for solutions of the form

�ðxÞ ¼
2
4 e�ik0x x < 0
Aeikx þ Be�ikx 0< x< L

Ceikoðx�LÞ x > L

;

where we can choose the amplitude of the wave in x < 0 to
be unity (and there is, of course, a common factor e�iwt).
The wave number k in the central region is obtained from

the dispersion relation for the plasma there, Fð!; kÞ ¼ 0
say, while k0 is the vacuum wave number.
Imposing conditions of continuity of the amplitude and

its derivative at the boundaries gives

Aþ B ¼ 1;

AeikL þ Be�ikL ¼ C;

kA� kB ¼ �k0

kAeikL � kBe�ikL ¼ k0C:

If we put K ¼ k=k0 and l ¼ k0L, then from the above we
obtain the relation

i tanðKlÞ ¼ 2K

K2 þ 1
; (3)

which determines K. Note that this is independent of the
dispersion relation for waves in the slab. All that is needed
is that there be propagating waves on each side of it, the
fact that we have assumed them to be symmetrical being
just for convenience rather than strictly necessary. Possible
solutions representing a locally unstable region emitting
waves in both directions are found by first finding a value
of K which satisfies (3). The wave number in the slab is
then k ¼ Kk0 and from the external dispersion relation
k0c ¼ ! so that k ¼ K!

c . We must then look for a non-

trivial solution, if such exists, of

F

�
!;
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c

�
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In particular, we look for solutions with positive imagi-
nary part, whose existence shows that there is an unstable
layer which can emit growing waves in both directions.
Equation (3) has multiple solutions, the first few of which
are plotted in Fig. 2(a) for L ¼ 20. A question of interest is
just how the energy going off from the slab is partitioned
between the two directions. From the above equations it

can be shown that C ¼ cosðKlÞ½K2�1
K2þ1

� and that jC2j ¼ 1,

showing that half the energy emitted from the slab goes in
each direction, something which might have been expected
from symmetry. In Figs. 2(b) and 2(c) we show some of the
unstable modes predicted by (4) for a slab with L ¼ 20 and

FIG. 2. (a) Solutions of Eq. (4) ‘‘�’’ real part, ‘‘þ’’ imaginary part; (b) Real part of ! as a function of wave number;
(c) Corresponding imaginary part.
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the same parameters as were used in our plots of the infinite
plasma dispersion relation. Since there is a discrete series
of possible values of K, the dispersion curve now consists
of a series of points. It is clear that the real part of the
frequency of these unstable modes follows closely that of
the infinite plasma, going along the connecting branch
described above. The imaginary part gets smoothed out,
so that the connecting branch is no longer stable although
the growth rates are greater on each side of it. In these
regions, where the infinite plasma is unstable, the finite
slab growth rate is slightly below that for the infinite
plasma. The existence of many eigenmodes with almost
the same frequency means that modes with almost the
same wavelength outside the slab can have very different
wavelengths within the slab. This is reminiscent of the
behavior we found for the horseshoe distribution when
we analyzed the instability in a plasma annulus [16].
There a large number of modes were found with different
structure within the plasma annulus but similar spatial
growth rate.

Now we consider radiation from a nonuniform system in
which the magnetic field varies so that

� ¼ eB

�m
¼ �0

�
1þ x

L

�
; (5)

i.e., the magnetic field has a gradient with characteristic
scale length L. We scale all frequencies to be in terms of
the plasma frequency and lengths in terms of c=!pe. The

dispersion relation for both parallel and perpendicular
propagation can be written in the form k2 ¼ Fð!;�Þ,
which on inserting (5) can be converted into an equivalent
differential equation

d2�

dx2
¼ �Fð!;�ðxÞÞ� ¼ GðxÞ�: (6)

We look at the properties of this equation. First we con-
sider a simple WKB approximation. If we take ! ¼ �0 ¼
10, � ¼ 1:02 and L ¼ 20 and parallel propagation, then

the local wave number as a function of x is as in Fig. 3(a).
As can be seen there is a smooth variation and we would
not expect any reflection, a conclusion which can be con-
firmed by numerical solution of the equation. However, if
we add a positive imaginary part to !, corresponding to a
growing wave, then by adjusting its magnitude we can
obtain the dispersion curve shown in Fig. 3(b). With the
correct choice of imaginary part, the real parts of the
incident and reflected branches join up on the axis and
the result is that a wave going to the left on the low field
side connects up to a wave going to the right on the high
field side. If we then solve the differential equation with the
boundary condition of an outgoing wave on the low field
side we obtain a solution of the form shown in Fig. 4. Away
for the resonance the dispersion relation is close to being
just !2 ¼ k2c2 and the imaginary part of ! produces a
corresponding imaginary part of k so that the wave ampli-
tude falls off exponentially in the direction of propagation.
This is not damping, just a reflection of the fact that the
further the wave is from the source the earlier the time at
which it was produced and the lower its amplitude. The
solution shown evidently corresponds to a solution with
outgoing waves on both sides, an incoming component
having an amplitude which increases exponentially away
from the source. Such a wave is inevitably picked up at
some point due to inaccuracies in the eigenvalue for ! and
numerical error, but the solution shown is evidently close
to an eigensolution with a localized instability and only
outgoing waves. In fact the solution seems to correspond
very closely to a situation in which there is only an out-
going wave on one side. For the parameters given and the
real part chosen to be 10, the imaginary part of ! comes
out at 0.13. The real part can be chosen arbitrarily and
choosing it to be 10 simply means that the resonance
Reð!Þ ¼ � is fixed to be at x ¼ 0. This growth rate is of
the same order of magnitude as the typical growth rate in a
homogeneous plasma with the same parameters as those at
x ¼ 0 here. If we reduce the energy of the ring particles to
make � ¼ 1:01, the growth rate is less at Imð!Þ ¼ 0:09, as

FIG. 3. (a) Wave number as a function of x with ! ¼ 10;
(b) Wave number as a function of x with ! ¼ 10þ 0:13:i. In
(b) the full and dotted lines show the real part, both positive and
negative roots being plotted to illustrate the confluence of the
roots. The dashed line is the imaginary part corresponding to the
positive root. FIG. 4. Wave amplitude as a function of x.
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might be expected. For perpendicular propagation we
found similar behavior, but with the emission mainly to
the low field side rather than the high field side as is the
case for parallel propagation. The imaginary part of !,
0.12, is again of the same order as in the corresponding
homogeneous plasma and again lowering the � of the ring
lowers the growth rate, this time to around 0.08. In con-
clusion we see that for the continuous field gradient we can
get, as in the slab geometry, solutions in which a localized
region of instability gives rise to exponential growth of
waves which propagate away from the resonance region. In
both cases we have looked at, propagation exactly parallel
and perpendicular to the magnetic field, the emission is on
one side only. Why the direction of the emission changes in
the different cases is something which needs further inves-
tigation. If the parameters are changed significantly from
those at which the dispersion curves take the special form
shown, then they seem generally to revert to something
close to the real ! case in which there is almost perfect
transmission of an incident wave.

We have considered the problem of a ring distribution,
unstable to a cyclotron maser instability, in a plasma with a
magnetic field gradient and have shown that it is possible to
have a localized unstable region around the cyclotron
resonance with waves radiating outwards from it. This
distribution is unlikely to be a good approximation to the
distribution in the auroral region but the more realistic
horseshoe distribution leads, unfortunately, to a much
more complicated dispersion relation solving which, even
in the homogeneous plasma case, is not simple. However,
Fig. 5 shows some solution values and that there is some
similarity with the ring distribution. The main point to be
taken from this analysis is that wave propagation in the
presence of a distribution unstable to a cyclotron maser
instability may be significantly different from that in a
stable plasma. In an inhomogeneous system there can exist
localized instabilities from which outwardly propagating
waves are emitted, growing in time. Exactly how the
emission behaves appears to depend on the geometry of
the problem in ways which we have not yet managed to

fully explain. Another important property is that nongrow-
ing waves can propagate through the cyclotron resonance
region, whereas in a cold plasma they would encounter a
nonpropagating region with a cutoff on one side and a
resonance on the other. While we cannot, with our simple
ring distribution, claim to have solved the long-standing
problem of how AKR gets onto the vacuum branch, what
we have shown is that arguments based on the properties of
the cold plasma dispersion curves do not necessarily in-
dicate that there is a problem. To see how emission from a
localized region of cyclotron instability behaves will need
careful analysis of the wave properties with the relevant
unstable distribution function. This Letter serves to show
that interesting and perhaps unexpected results may
emerge from such an analysis.
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