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Recent experiments have convincingly demonstrated the existence of surface nanobubbles on sub-

merged hydrophobic surfaces. However, classical theory dictates that small gaseous bubbles quickly

dissolve because their large Laplace pressure causes a diffusive outflux of gas. Here we suggest that the

bubbles are stabilized by a continuous influx of gas near the contact line, due to the gas attraction towards

hydrophobic walls [Dammer and Lohse, Phys. Rev. Lett. 96, 206101 (2006); Zhang et al., Phys. Rev. Lett.

98, 136101 (2007); Mezger et al., J. Chem. Phys. 128, 244705 (2008)]. This influx balances the outflux

and allows for a metastable equilibrium, which, however, vanishes in thermodynamic equilibrium. Our

theory predicts the equilibrium radius of the surface nanobubbles, as well as the threshold for surface

nanobubble formation as a function of hydrophobicity and gas concentration.

DOI: 10.1103/PhysRevLett.101.214505 PACS numbers: 47.55.db

Various recent studies have revealed the existence of
nanoscopic soft domains at the liquid-solid interface [1–
16]. As atomic force microscopy (AFM) shows, these soft
domains resemble spherical caps with heights of �10 nm
and diameters of 2R � 100 nm, corresponding to a small
contact angle (on the gas side) of � � 10�, see Fig. 1 for a
sketch. The most consistent interpretation [17] of these soft
domains is that they are surface nanobubbles, i.e., nano-
scale gas bubbles located at the liquid-solid interface.
Spectroscopic studies [15,18] and x-ray reflectivity mea-
surements [19–21] experimentally confirm the presence of
gas at the wall. Moreover, the size and density of these
objects depend on the dissolved gas concentration and they
disappear completely when the liquid is degassed [10–
12,18,22]. CO2 bubbles have a much shorter lifetime
(only 1–2 h) as compared to air bubbles, due to the much
lower pressure of CO2 in the atmosphere and its better
solubility in water [15]. The existence of these surface
nanobubbles has potentially great technological impor-
tance, as they have been shown to result in fluid slip in
hydrophobic surfaces, leading to a potentially large reduc-
tion in fluid dissipation for flows in small devices [23–25].

Observations of long lived surface nanobubbles flatly
contradicts the classical theory of bubble stability [26].
Small bubbles have large internal gas pressures, in order
to balance the compressive action of surface tension. For a
bubble in water of radius R ¼ 50 nm, which with above
contact angle � ¼ 10� corresponds to a radius of curva-
ture Rc ¼ R= sin� � 250 nm, and surface tension � ¼
73 mN=m (20� temperature), the gas pressure according
to classical macroscopic theory (neglecting the disjoining
pressure [27]) is Pgas¼2�=Rc¼2�sin�=R¼0:58MPa. In

employing Laplace’s equation we also neglect the bubble-
stabilizing contribution from hydroxide ion adsorption on
the bubble surface [28]. If the resulting charge density is

constant, this ion adsorption contributes a radius-
independent term to Pgas, which is negligible for small

enough bubbles. Henry’s law then dictates that the concen-
tration of gas at the bubble surface is cðRÞ ¼ c0Pgas=P0,

where c0 is the saturated concentration of gas at atmos-
pheric pressure P0. This is necessarily much larger than the
gas concentration c1 � c0 far away, leading to a diffusive
outflux of gas and bubble dissolution [26,29]. If the contact
angle � remains finite for R ! 0 and assuming that
Laplace’s law remains valid at molecular scales, then
cðRÞ formally diverges, signaling the breakdown of the
continuum approach.
Various suggestions have been made to explain the long

lifetime of surface nanobubbles. Among these, the reduc-
tion of surface tension for large curvature on small scales

FIG. 1 (color online). Sketch of gas outflux and influx into a
surface nanobubble and definition of the contact angle �, the
surface nanobubble radius R, and the radius of curvature Rc.
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[30,31] (operative for bubbles smaller than �5 nm), the
oversaturation of the liquid around the nanobubbles with
gas [7,15], the effect of induced charges in the Debye layer
around the bubble interface [32], or the stabilization of
bubbles due to contaminant molecules in the water [33],
similarly as has been suggested for microbubbles in con-
taminated water [34]. In this Letter we propose an alter-
native mechanism for bubble stabilization, namely, that the
gas outflux is compensated by gas influx at the contact line.

The diffusive mass outflux from a surface nanobubble is
given by

JoutðRÞ ¼ D
Z

dAn � rc � 2�D
Z R

0
rdr@zc; (1)

where D is the diffusion constant of gas in the liquid
(typically 10�9 m2=s) and n is the normal vector to the
droplet surface. We have assumed that the bubble is nearly
flat, so that the diffusive gradient is primarily in the ẑ
direction, perpendicular to the solid surface. This diffusive
flux can then be evaluated by solving the steady state
diffusion equation in the liquid. The result is

JoutðRÞ ¼ �RD½cðRÞ � c1� ¼ �RD

�
c0
P0

2� sin�

R
� c1

�
:

(2)

The volume flux rate joutðRÞ ¼ JoutðRÞ=cðRÞ is then given
by

joutðRÞ ¼ JoutðRÞ
cðRÞ ¼ �RD

�
1� c1

cðRÞ
�
: (3)

The volume of the bubble thus decreases linearly with
time, typically with a volume flux rate��RD���50�
10�9�10�9 m3=s, when assuming complete degasing. For
an initial bubble of radius 50 nm, this implies a dissolution
timescale of �1 �s.

Stabilization against dissolution requires a physical ef-
fect to cancel this diffusive outflux. Although intermolec-
ular forces might modify the liquid surface tension from its
macroscopic value [27,31], the energetic cost of creating
surface energy ensures that the gas pressure in the bubble is
always higher than that of the surrounding liquid, and
hence diffusive outflux necessarily persists even when
interactions with the solid surface are accounted for.
Stabilization can be achieved however, by mechanisms
causing an influx of gas into the bubble. Such an influx
need not occur uniformly across the bubble surface, but can
be spatially concentrated. In particular, it is quite natural to
consider influx mechanisms near the contact line, where
intermolecular forces are most significant. For a sketch of
the gas flow directions, we refer to Fig. 1. The magnitude
of any contact line dominated influx increases with the cir-
cumference of the bubble, and hence could compete effec-
tively with the diffusion mediated outflux Eqs. (2) and (3).

What is the origin of such an influx? Recent MD simu-
lations [35–37] of gas dissolved in water in contact with a
surface demonstrated that on hydrophobic surfaces there is

gas enrichment near solid walls. Such an enhanced gas
concentration at hydrophobic walls has been confirmed
spectroscopically [15,16] and with x-ray reflectivity mea-
surements [19–21]; also neutron reflectivity experiments
[38] suggest it. In the MD simulations of Ref. [35], for
sufficiently hydrophobic walls the concentration near walls
can exceed more than 2 orders of magnitude above the
concentration in bulk liquid. Physically, this enrichment
occurs because there is a potential �ðzÞ attracting solute
molecules to the wall. The equilibrium concentration of the
solute is thus determined by the balance between diffusion

and attraction, according to Ddc
dz ¼ � 1

�
d�
dz c where � is the

mobility of the solute. The Einstein relation D ¼ kBT=�
then implies the equilibrium distribution of solute as
cðzÞ ¼ c0 expð��ðzÞ=kBTÞ: A hundredfold concentration
of solute molecules near the wall as found for the case
studied in Ref. [35] implies that �ðzÞ decreases by about
4kBT near the wall, over a molecularly determined length
scale. In general, we assume that the energy gain �� of a
solute molecule at the wall equals �� ¼ skBT.
Solute molecules at a gas-liquid interface are attracted to

the wall and hence driven inside the bubble; see again
Fig. 1. The size of the gas influx Jin is given by

JinðRÞ � 2�
Z R

0
rdrcðrÞ 1

�

d�ðz ¼ hðrÞÞ
dz

: (4)

Here we have again approximated the bubble shape hðrÞ as
nearly flat. Since the attractive force drops off quickly with
distance, the flux is only appreciable near the contact line.
Using the fact that near the contact line hðrÞ ¼ ðR� rÞ�
tan� we can approximate Eq. (4) to obtain the mass influx
JinðRÞ � 2�RcðRÞ��=ð� tan�Þ, or the volume influx

jinðRÞ ¼ JinðRÞ
cðRÞ � 2�sDR

tan�
: (5)

As anticipated above, Eq. (5) suggests that the influx
scales linearly with R, exactly the same scaling as the
diffusive outflux. However, recent measurements [39–
42], including some on surface nanobubbles [43,44],
have shown that for sufficiently small bubbles or droplets,
the contact angle � depends on the contact line curvature
and thus on the bubble size, i.e., � ¼ �ðRÞ. This can be
described through a modified Young-Dupré equation

cosð�� �Þ ¼ cosð�� �1Þ � C

Rþ �
; (6)

where C and � are constants with the dimensions of length,
and �1 is the usual macroscopic equilibrium contact angle.
A popular (though disputed [39]) model assumes that the
correction arises from a line tension � of the contact line
[45], in which case C ¼ �=�, where � is the liquid surface
tension. The ratio C=� is set by the contact angle �0 for
R ! 0, namely C=� ¼ cosð�� �1Þ � cosð�� �0Þ, so
that one can rewrite (6) as
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cos� ¼ cos�1 � cos�1 � cos�0
1þ R=�

: (7)

The length scale � is the onset scale of microscopic cor-
rections to the macroscopic contact angle. The exact form
of Eq. (7) and the exact values of the parameters are not
relevant in the context of this Letter; all that is needed is
that �ðRÞ decreases with decreasing bubble radius R, which
indeed is observed in Refs. [39,40,43,44]. We take � ¼
70 nm, �1 ¼ 50�, and �0 ¼ 0�. Note that the behavior
�ðR ! 0Þ ¼ 0 leads to a stabilization of small surface
nanobubbles, as their curvature becomes small. In the
limiting case R ! 0 it even vanishes and the numerically
found [35] case of a mono- or bilayer of gas molecules
between the surface and the liquid is recovered.

The outflux joutðRÞ and the influx jinðRÞ are shown in
Fig. 2 for some typical parameters. In that case, a stable
dynamic equilibrium radius R	 defined through joutðR	Þ ¼
jinðR	Þ exists. Note that indeed various studies have re-
vealed the existence of a preferred radius of the surface
nanobubbles [6,15], which depends on the gas concentra-
tion [15]. For bubbles smaller than the equilibrium radius,
the influx overcompensates the outflux, for larger bubble
the outflux wins. If the gas concentration c1 decreases, the
outflux increases and the equilibrium radius is becoming
smaller, in agreement with experimental observations on
nanobubbles [12]. If, on the other hand, the surface gets
more hydrophobic and �1 decreases and/or the attraction
potential s increases, the equilibrium radius is shifted
towards larger values, again in agreement with experimen-
tal observations.

The necessary condition for a stable dynamic equilib-
rium and therefore for stable nanobubbles to exist is that at
small bubble sizes R ! 0 the influx jinðRÞ is larger than the

outflux joutðRÞ. This implies the condition

s >
1

2
tan�0

�
1� c1

cðR ! 0Þ
�
� 1

2
tan�0 (8)

for small gas concentration c1 
 cðR ! 0Þ. The condi-
tion (8) is satisfied for sufficiently hydrophobic surfaces,
where tan½�ðR ! 0Þ� is small enough and when the solute
is attracted to the wall, so that s is large enough. If
condition (8) is fulfilled, there also is an unstable equilib-
rium at R	 ¼ 0, allowing for spontaneous nanobubble for-
mation. If that condition is not fulfilled, the equilibrium at
R	 ¼ 0 becomes stable and no surface nanobubbles form,
in spite of an enhanced gas concentration very close to the
surface. These may have been the conditions of the X-ray
reflectivity experiments of Ref. [19], where a gas accumu-
lation, but no nanobubbles, have been seen.
How does the preferred bubble radius R	 depend on the

material properties and the control parameters? To illus-
trate this dependence, we show R	ðs; c1=c0Þ resulting from
our simple model [Eqs. (3), (5), and (7), see Fig. 3]. The
dependence of R	 on the attraction strength s is as expected
rather strong—slight (chemical or structural) inhomogene-
ities in the surface will therefore result into some distribu-
tion in the preferred radius, as indeed experimentally seen
in Refs. [6,15]. In contrast, away from saturation, the
dependence on the exact value of the relative gas concen-
tration c1=c0 is relatively weak.
Some comments on the driving mechanism: While the

gas diffuses in the liquid, there is a gas flow from the
contact line towards the surface inside the bubble. To avoid
conflict with the second law of thermodynamics, such a
state can only be transient. We do not know the origin of
the nonequilibrium; it could be caused by temperature
gradients, chemical effects, or local oversaturation. In
principle the observation method itself (e.g., AFM or opti-
cal detection of the nanobubbles) could be the origin of the
equilibrium distortion. If the system were isolated, the
second law of thermodynamics requires that in the long
term (possibly hours or even days) the driving mechanism
would expire and the surface nanobubbles therefore dis-
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FIG. 2 (color online). Gas outflux jout [black-solid line, from
Eq. (3)] and influx jin [red-dashed line, from Eq. (5)] into the
surface nanobubble as function of bubble radius R. The crossing
point defines the equilibrium radius R	. The units of j are m3=s.
If the slope of jout at R ¼ 0 is larger than that of jin, no surface
nanobubbles can emerge. For this illustrative plot we used
Eq. (7) with � ¼ 70 nm, �1 ¼ 50�, and �0 ¼ 0�, and the values
s ¼ 0:36 for the relative strength of the attraction potential,
c1=c0 ¼ 0:25 for the relative gas concentration, and D ¼
10�9 m2=s (which only scales the y axis). For these data the
stable equilibrium radius is R	 ¼ 85 nm.
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FIG. 3. Dependence of equilibrium radius R	 on the wall
attraction strength s for relative gas concentrations c1=c0 ¼
0:1, 0.25, 0.5, 0.95, bottom to top.
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solve, i.e., nanobubbles would be a transient phenomenon.
Unfortunately, long-term observations of surface nanobub-
bles in closed systems have to our knowledge not yet been
carried out. Note that the required nonequilibrium situation
must also reflect in the chemical potential �, as in equi-
librium gas flow can only occur along a gradient in �, and
a circular flow would not be possible.

A method to create controlled nonequilibrium condi-
tions is to generate surface nanobubbles through electroly-
sis [11,46]. In Ref. [46] it has been shown that several tens
of seconds after switching on the potential, these surface
nanobubbles do not further grow, in spite of a nonzero
current. This observation suggests that the nanobubbles
indeed have achieved a dynamic stable equilibrium, with
the Laplace pressure driven gas outflux being compensated
by the gas influx at the electrode.

In summary, we have suggested a dynamic equilibrium
stabilization mechanism for surface nanobubbles: The gas
outflux driven by Laplace pressure is compensated by a gas
influx at the contact line, leading to a metastable equilib-
rium under certain conditions. A necessary ingredient into
this model is a contact angle decrease with decreasing
bubble size R. Though such a decrease has been observed
both experimentally [43,44] and numerically [39,40], fur-
ther work is required to better quantify and understand this
dependence �ðRÞ.
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