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The link between the rheology of 3D aqueous foam and the adhesion of neighboring bubbles is tested

by confronting experiments at two different length scales. On the one hand, the dynamics of adhesion are

probed by measuring how the shape of two bubbles in contact changes as their center-to-center distance is

modulated. On the other hand, the linear viscoelastic behavior of 3D foam prepared with the same soapy

solution is characterized by its complex shear modulus. To connect the two sets of data, we present a

model of foam viscoelasticity taking into account bubble adhesion.
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Liquid foams exhibit complex mechanical behavior
[1,2]. When subjected to a small shear stress, they respond
like a linearly elastic solid, but if the applied stress is
increased above the yield stress, foams flow like shear-
thinning fluids. This behavior is related to the foam struc-
ture on the bubble scale. The elasticity is due to the
reversible increase of interfacial energy induced when the
bubbles are strained. Yielding and flow occur if the applied
stress is large enough to trigger irreversible local bubble
rearrangements [3,4]. In the linear regime where strain
induced bubble rearrangements do not exist [5], such a
simple description of foam rheology would predict per-
fectly elastic response at frequencies sufficiently low for
viscous friction to be insignificant. This is at odds with
macroscopic rheological measurements of the slow linear
viscoelastic response to stresses well below the yield stress.
Such experiments have evidenced significant mechanical
dissipation [2,6–8]. This behavior has recently been ex-
plained as the consequence of the coarsening of the foam,
driven by gas diffusion between neighboring bubbles [8,9].
Indeed, coarsening induces intermittent bubble rearrange-
ments which locally relax stress. A simple homogenization
argument predicts that these relaxations yield a Maxwell
liquid behavior where the following dependence of the
complex shear modulus G� on angular frequency ! is
expected [8]:

G� ¼ G0 þ iG00 ¼ G0

i!�

1þ i!�
: (1)

G0 is the static foam elasticity that would be observed in
the absence of any rearrangements. The characteristic re-
laxation time � is proportional to the average time interval
between coarsening-induced bubble rearrangements at a
given place in the foam [8].

Moreover, at frequencies ! � 1=�, the experimentally

observed loss modulus G00 increases as !1=2, indicating

that here, additional relaxation processes must be active
[6,7]. Such behavior is common to several disordered close
packings of small soft units such as concentrated emulsions
[10] or pastes [11]. Liu et al. have proposed a generic
model of viscoelasticity in these materials based on weak
regions where the units (droplets, grains, bubbles. . .) can
slip on each other along planes whose orientation is given
by the local packing structure [10]. It predicts the scaling

law: G� ¼ G0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i!=!c

p Þ where the characteristic fre-
quency varies with the liquid viscosity � as!c / G0=�. In
contrast, Buzza and Cates have discussed a variety of
possible origins of viscoelastic dissipation which are spe-
cific to foams and emulsions, such as surfactant transport
processes and viscous friction at the gas-liquid interfaces
[12]. Therefore, new experimental information is needed to
identify among these possible mechanisms the dominant
one that governs the fast rheological response of liquid
foam.
In this Letter, we present experiments probing how the

rheology of the liquid films is linked to the macroscopic
mechanical response of foams. This is done by confronting
the experimentally observed dynamic adhesive properties
of bubbles to the macroscopic viscoelastic response of
foams produced with the same surfactant solution. We
also present a theoretical model of the coupling between
interfacial film viscoelasticity and macroscopic foam
viscoelasticity.
All the investigated bubbles and foams are made using a

solution of tetramethyltetradecylammonium bromide di-
luted at a concentration of 3 g=l in a water-glycerol mix-
ture (volume ratio of 75=25). To produce the foam, the
solution and the gas are injected into a column filled with
glass spheres as described in [13]. The gas is constituted of
nitrogen saturated with perfluorohexane vapor to slow
down the coarsening. We determine the liquid fraction
�l of the foam obtained at the column outlet by weighing
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a sample of known volume. We adjust the gas and liquid
flow rates to produce foams with �l ¼ ð5:0� 0:2Þ%.
Using diffusive light transmission, the mean bubble radius
is measured: It is equal to 24 �m� 2:0 �m at the age of
12 minutes and 26 �m� 3 �m at 30 minutes. The age is
the time elapsed since the instant of sample production.
Pictures of the foam confined between two glass plates do
not reveal any significant evolution of the polydispersity up
to 40 minutes.

The adhesion between bubbles is characterized using
the experimental setup described in [14]. Two hemispheri-
cal bubbles are put into contact, and their profiles are
recorded with a CCD camera [Fig. 1(a)]. Using image
analysis, we measure the contact radius rc and the contact
angle � formed at the junction between the two bubbles
[Fig. 1(b)]. rc and � are monitored as a function of time t.

Macroscopic foam viscoelasticity is investigated using a
rheometer (Bohlin, CVOR 150) equipped either with a
plate-plate geometry (plate radius equal to 3 cm, gap of
3 mm) or with a cone-plate geometry (cone radius ¼ 3 cm,
cone angle ¼ 4�). For both geometries, the surfaces in
contact with the foam are grooved to avoid wall slip. All
along the experiment, the air in contact with the sample in
the rheometer is saturated with humidity. To erase the
memory of the strain applied to the sample during the
filling of the rheometer, the sample is presheared by an
oscillating strain of frequency 1 Hz and amplitude " ¼
10�1, close to the yield strain. This preshear is applied at a
foam age of 3.5 minutes and lasts five minutes. The rheo-
logical measurements start at a foam age of 12 min and do
not last more than 10 min.

The results of the dynamic bubble adhesion study have
been reported in detail in a recent paper [14]. The distance
between the bubble supports is modulated in time along the
z-direction. We find that a sinusoidal modulation induces
a sinusoidal variation of the contact radius rcðtÞ ¼ rc0 þ
�rce

i!t accompanied by an oscillation of the contact
angle around its static value �stat such that �ðtÞ ¼ �stat þ

��ðtÞei!t. The amplitude of the oscillation is found to be
linearly related to the amplitude of the relative variation of
the contact radius�rc=rc0. To describe this relation as well
as the phase shift between the contact radius and the
contact angle oscillations, we introduce the complex
modulus A� whose real and imaginary parts, A0 and A00,
describe the in-phase and out-of-phase angular response:

��ðtÞ ¼ �rc
rc0

ðA0 þ iA00Þ: (2)

The evolution of A0 and A00 with frequency is compared to
that expected for either adhesive or sliding bubbles which
both scale as the square root of the frequency (Fig. 2). It has
been interpreted as the consequence of surfactant transport
between the bulk of the film and the interfaces as well as
along the interfaces [14].
In the linear regime, the frequency and temporal re-

sponses of a viscoelastic material provide equivalent in-
formation. Since creep experiments are more convenient
for probing the slow rheological response, we use this test
to study our foam samples over time intervals chosen short
enough so that the evolutions of bubble size and bubble
rearrangement rate are negligible. After the preshear, at an
age of 12 min, we apply to the foam a shear stress step of
amplitude �0, chosen small enough for the response to be
linear and to avoid yielding. The induced strain "ðtÞ is
measured as a function of time, and the response is de-
scribed in terms of the compliance JðtÞ ¼ "ðtÞ=�0 (Fig. 3).
The data obtained using cone-plate and plate-plate geome-
tries are consistent. The asymptotically linear increase of
JðtÞwith time is consistent with the Maxwell model Eq. (1)
that predicts the following compliance:

JðtÞ ¼ 1

G0

�
1þ t

�

�
: (3)

The best fit to the data measured for t > 28 s yields G0 ¼
206 Pa� 4 Pa and � ¼ 246 s� 10 s. The transitory re-
sponse for t < 28 s corresponds to a second slow relaxa-
tion probably governed by the intrinsic viscosity of the

FIG. 1. (a) Image of two contacting bubbles. (b) Adhesion
profile obtained after fitting the shape of the bubbles using the
Young-Laplace equation. The contact radius rc and the contact
angle � are determined from the intersection of the reconstructed
profiles.

FIG. 2. Evolution with frequency of the angular moduli A0 (d)
and A00 (�) defined in Eq. (2). The dashed lines correspond to the
predictions of the moduli for the two limiting cases of adhesive
or sliding contacting bubbles.
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interfaces [8]. To simplify, we will neglect it since its
contribution to G� above 1 Hz is small.

Moreover, the viscoelastic response is probed using an
oscillatory test in a frequency range between 0.01 Hz and
10 Hz. After the preshear, at an age of 12 min, a sinusoidal
shear strain of amplitude 0.01 much smaller than the yield
strain (of the order of 0.1) is applied, and the complex
modulus G� is measured. The data obtained using cone-
plate and plate-plate geometries are consistent. Figure 4
shows the elastic and viscous moduli measured as a func-
tion of frequency. It also shows the moduli deduced using
Eq. (1) with the values of G0 and � obtained in the creep
experiments (Fig. 3). These data are limited to frequencies
below 0.01 Hz because the step stress response exhibits
inertio-elastic vibrations at short times. The elastic modu-
lus is observed to be almost constant over the whole range
of frequencies while the loss modulus goes through a
minimum around 1 Hz. The difference between the mea-
sured G00 and the Maxwell one means that other relaxation
processes must be taken into account.

To link the measured bubble adhesion to bulk foam
rheology, an analysis at the scale of the film network is

needed. We start from the model initially developed by
Princen for dry 2D foams [3]. The foam is simply pictured
as a regular 2D hexagonal lattice [Fig. 5(a)] obeying
Plateau’s rule which imposes a 120� angle between films
meeting at vertices. Moreover, each cell surface is con-
served when the foam is sheared, as if the gas contained in
the bubbles were incompressible. Princen calculated how
the orientations of the different films are modified by an
imposed static shear strain ". For the structure shown in
Fig. 5(b), he found that to first order, the edges perpen-
dicular to the shear direction turn by an angle c ¼ "=2.
The surface tension forces of the films crossing the hori-
zontal dashed line in the figure and the spacing between
these films determines the macroscopic shear stress to first

order as � ¼ 2�c =ð ffiffiffi
3

p
rÞ where � is the surface tension of

the liquid gas interface. Thus, Princen predicted the static

shear modulus G0 ¼ �=" ¼ �=ð ffiffiffi
3

p
rÞ. Under dynamic

conditions, this relation remains unchanged but the angles
between films that meet at vertices no longer follow
Plateau’s rule. The direction of the films initially perpen-
dicular to the shear direction is now described by the angle
c þ �c where �c is given by Eq. (2) [14], by analogy
with the double-bubble experiments. On this basis, the
complex shear modulus can be estimated as a function of
the complex angular modulus A�:

G� ¼ G0½1þ �A�� (4)

� is a geometrical constant, equal to
ffiffiffi
3

p
in the case of the

2D hexagonal dry film network.
To compare our model to the measured rheological data,

we consider� as an adjustable parameter since its value for
a disordered 3D wet foam is difficult to predict theoreti-
cally. Moreover, for such a comparison, one must also take
into account the slow relaxation due to coarsening-induced
bubble rearrangements. It has been shown that these rear-
rangements can be modelized as zones that are dispersed
throughout an elastic matrix and that temporarily lose their
rigidity [8]. A homogenization argument on this basis leads
to the Maxwellian viscoelastic behavior described by
Eq. (1). The kind of homogenization used here can be
generalized from elastic to viscoelastic matrices [15].
The viscoelasticity due to bubble adhesion can therefore

FIG. 4. Frequency dependence of G0 (closed symbols) and G00
(open symbols) measured for 6 samples. The diamonds are
deduced from the creep data using Laplace transform while
the other symbols correspond to oscillatory data. The lines
represent the moduli predicted by [Eq. (1)] with G0 ¼ 206 Pa
and � ¼ 246 s.

FIG. 5. The Princen model for the deformation of a 2D hex-
agonal dry foam. (a) Initial structure. (b) After a small quasi-
static shear strain has been applied in the x direction, the angles
formed at the vertices remain equal to 120�.

FIG. 3. Time evolution of the compliance during a creep
experiment with a constant stress �0 applied during 100 s. The
compliance is averaged over 4 samples and 3 values of �0

comprised between 3 and 6 Pa. The dashed line corresponds to
the prediction of Eq. (3) (see text).
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be taken into account by replacing in Eq. (1) G0 by the
complex shear modulus predicted by Eq. (4):

G�

G0

¼ i!�

1þ i!�
½1þ �A��: (5)

Figure 6 establishes the link between the macroscopic
shear modulus data and the prediction of our model based
on the two-bubble response [Eq. (5)]. The elastic and loss
moduli (showed in Fig. 4) are normalized by the value of
G0 obtained from the creep experiment, and averaged over
results for several samples. The moduli deduced from the
two-bubble measurements are predicted using Eq. (5). The
parameter � is set to 0.12 which provides the best fit
between the two sets of data. The good agreement between
all the data at high frequency presented in Fig. 6 shows that
the viscoelasticity in this regime can be accounted for by
the dissipation due to surfactant transport in the liquid
films. The discrepancy between the predicted and mea-
sured dissipation at frequencies between 0.01 and 0.1 Hz
suggests that here, relaxation processes not yet taken into
account in the model are active, possibly related to intrinsic
dilational interfacial viscosity as evidenced in previous
creep measurements [8].

Moreover, the difference between the theoretical value

� ¼ ffiffiffi
3

p
, and the fitted one, 0.12, underlines the limitations

of the proposed model. First, the Princen model describes
2D foams while our experiments probe 3D foam. Secondly,
the lattice considered in the model is ordered, in contrast to
the experimentally investigated foam. As a perspective for
further work, we note that at frequencies so high that
surfactant diffusion along the interfaces becomes insignifi-
cant on the time scale of an oscillation, one expects the
complex angular modulus A� to be proportional to the film

dilational modulus E� [14]. Indeed, if the interfacial elas-
ticity is limited by the diffusion of the surfactant from the
bulk towards the interface, its dilatational modulus E� is
given by the Lucassen van den Tempel model. In the limit
where surfactants have time to diffuse from the bulk to the
surface, we expect [16,17]: E� � E0

ffiffiffiffiffiffiffiffiffiffiffi
i!�d

p
. E0 is the limit

elasticity and �d is a characteristic surfactant diffusion
time. As a consequence, the complex shear modulus of
foams at high frequency should scale as the square root of
frequency. Such a frequency dependency has indeed been
observed in aqueous foams up to 60 Hz by Gopal et al. [7].
Thus, interfacial dilatational viscoelasticity as taken into
account in our model predicts the same scaling with fre-
quency of the complex shear modulus as the model
based on relaxations in generic weak regions mentioned
above [10].
To conclude, we present a model that successfully pre-

dicts the fast linear viscoelastic response of bulk foam on
the basis of experiments probing the interfacial rheology at
the scale of two bubbles in contact. These findings prepare
the ground for a future model of foam rheology that fully
captures how local structure and physico-chemical behav-
ior are coupled to the macroscopic response of foams and
similar complex fluids.
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[2] R. Höhler and S. Cohen-Addad, J. Phys. Condens. Matter

17, R1041 (2005).
[3] H.M. Princen, J. Colloid Interface Sci. 91, 160 (1983).
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FIG. 6. Comparison of measured and predicted evolutions with
frequency of the normalized elastic and loss moduli: The mea-
sured data of Fig. 4 (G0:d; G00:� ) are normalized by G0. The
prediction (G0:j, G00:h) of Eq. (5) with G0 ¼ 206 Pa, � ¼
246 s, and � ¼ 0:12 is based on the experimental angular
moduli of Fig. 2. The lines are guides to the eye.
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