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Pattern Forming System in the Presence of Different Symmetry-Breaking Mechanisms
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We report experiments on spatially forced inclined layer convection, where the combined effect of the
intrinsic symmetry breaking due to a gravity-induced shear flow and spatially periodic 1D forcing is
studied. We observed pattern selection processes resulting in stabilization of spatiotemporal chaos and the
emergence of novel two-dimensional states. Phase diagrams depicting the different observed states for
typical forcing scenarios are presented. Convection in the weakly nonlinear regime is compared with

theory, and a good agreement is found.
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Understanding pattern formation processes is important
in a variety of research areas ranging from economics [1] to
neuroscience [2]. Ideally, patterns emerge with a well-
defined wave vector by a spontaneous symmetry-breaking
bifurcation from an initial homogeneous state [3].
Naturally driven systems, however, often contain intrinsic
symmetry-breaking elements which influence the observed
patterns. This is the case, for example, in atmospheric
convection over topography [4] and in fingerprint forma-
tion in the presence of normal epidermic displacements [5].
By applying spatially periodic forcing to a carefully con-
trolled pattern forming system, such as Rayleigh-Bénard
convection, one is able to get valuable insight into the
important role of such symmetry-breaking constituents. It
also enables the investigation of pattern-forming aspects
that are otherwise difficult to assess, such as the stability
regimes of patterns (the ‘“Busse balloon™) [6,7],
commensurate-incommensurate transitions [8], or defect
aggregation resulting in localized coherent states [9]. The
combined effect of spatial forcing and other symmetry-
breaking mechanisms in a pattern-forming system is
largely unexplored [10]. As shown here, inclined layer
convection is well suited to study this problem.

Inclined layer convection, in which a thin fluid layer of
thickness d is subjected to a temperature gradient AT/d
and oriented obliquely with respect to gravity, is a rich
variant of isotropic Rayleigh-Bénard convection. The in-
troduction of an in-plane gravitational component through
inclination breaks the rotational symmetry. As a result,
depending on the inclination angle 6, either longitudinal
rolls (buoyancy driven) or transverse rolls (shear-flow
driven) set in at onset [11]. The wealth of nonlinear states
observed with increasing AT has been the focus of recent
experimental and theoretical studies [12—14].

In this Letter, we applied periodic forcing at an angle ¢
with respect to the in-plane gravity component [Fig. 1(a)],
with a wave vector g;. By varying 6, we were able to tune
the relative importance of the two anisotropies. For a given

0031-9007/08/101(21)/214503(4)

214503-1

PACS numbers: 47.54.—r, 05.45.—a, 47.52.4j

inclination angle, a 1D roll pattern with a wave vector
equal to the forcing wave vector was observed at small
AT (AT < AT., where AT, is the onset temperature
difference of the unforced system). As AT was increased,
the roll aligning mechanisms due to inclination and forcing
started to interact. For ¢ = 0°, both mechanisms cooper-
ated and rendered the longitudinal rolls more stable. In
particular, undulation chaos [12], which is a state found
close to onset for a large range of inclination angles in the
unforced system, was strongly suppressed. In contrast, for
¢ = 90°, competition and spatial resonances between lon-
gitudinal and transverse rolls occurred. This led to quali-
tatively new patterns, typically with rhombic symmetry, a
phenomenon rarely observed in pattern-forming systems.
The experimental system, described in detail in [15],
consisted of pressurized CO, gas confined in the vertical
direction between two parallel, thermally well conducting
plates separated by a distance d and held at a desired
temperature difference AT to within 0.001 °C. Two square
convection cells of side lengths L =85d and L = 35d were
used. The side walls were aligned parallel to the inclination
direction [y axis in Fig. 1(a)] to avoid undesired, boundary
driven, large scale flows. The average temperature used
was T,, = (25.00 = 0.02) °C, and the pressure in the cell
was kept at P,, = (48.26 = 0.03) bar throughout the experi-
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FIG. 1 (color online). (a) Schematic of forced inclined layer
convection configuration. (b) Microscope image of fabricated
SU-8 stripes on flat plate.
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ments. The Prandtl number was Pr = v/k = 1.3 (here v
and k are the kinematic viscosity and thermal diffusivity,
respectively). The corresponding Busse parameter was
Q = 0.5, confirming the validity of the Boussinesq ap-
proximation. The patterns were observed by the standard
shadowgraph technique [15].

The smaller cell was unforced and served as our refer-
ence. For inclination angles below the codimension-two
point 0., = 80°, theory predicts a bifurcation at AT.(6) =
AT.(0)/cos(f) to buoyancy driven longitudinal rolls.
These have a wave number g~ = 3.117/d and are aligned
with their axes parallel to the inclination direction. Above
the codimension-two point, the shear flow driven trans-
verse rolls prevail with a wave number ¢! = 2.81/d and
aligned with their axis orthogonal to the inclination direc-
tion (x axis). The onset of convection in the unforced cell,
which has been studied previously [11,12], agreed well
with the linear theory [16].

The forcing mechanism in our experiment was surface
corrugations, realized by an array of photo-resist (SU-8)
stripes fabricated onto the bottom plate [Fig. 1(b)] [9]. The
height and width of the stripes were & = (65 = 3) um and
[ = (100 = 1) um, respectively, and they covered the area
of the large square cell with a (1 = 0.001) mm period,
yielding a modulation wave number g, =2m/A; =
7/0.5 mm. Keeping only the leading Fourier mode, the
surface of the lower plate can thus be described as: z =
—d/2 + z; with z; = d[0.1h/d + & cos(q,x)], where the
modulation amplitude 6 = (2/7) sin(7r/10)h/d.

Two main cases were investigated. In the first, the forc-
ing SU-8 stripes were aligned parallel to the gravitational
component (¢ = 0) and in the second, they were orthogo-
nal (¢ = 7/2). Phase diagrams for both cases were ex-
plored by setting the inclination angle # and recording the
states while slowly scanning the reduced control parameter
e = [AT — AT,.(0)]/AT.(6). The cell height in these ex-
periments was d = (540 £ 5) um, resulting in a forcing
wave number g, = 1.09¢%. By using long waiting times
(>1007,, where 7, = d*>/k ~ 3s is the vertical thermal
diffusion time), care was taken that the system had suffi-
cient time to settle into steady state, before measurements
were made.

Parallel forcing.—Figure 2(a) shows the phase diagram
for the parallel case. While in the absence of forcing
convection sets in via a forward bifurcation at & = 0, the
surface corrugations caused the bifurcation to become im-
perfect, and we found longitudinal rolls [LR in Fig. 2(b)]
even for subcritical values of AT (i.e., —1 < & <0). For
inclination angles 0° = 6 < 28°, the longitudinal roll were
stable up to fairly large control parameters (¢ ~ 1) before a
bifurcation to varicose patterns (VP) was observed. These
were spanned by the wave vectors qg = (g, 0) and q; =
s[cos(a), sin(a)] with s = 0.6¢, and a = 36°. In the vi-
cinity 6 = 0, the instability to VP can be interpreted as a
finite wave number modification of the well-known mod-
ulational (s — 0) skewed-varicose instability of the un-
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FIG. 2 (color online). Parallel Forcing. (a) Phase diagram. The
solid line is a guide to the eye indicating the interface between
states. The broken line represents the theoretical curve of the
instability to undulation chaos in the unforced case. (b) Selected
patterns observed (square area shown has side length equal to
21d). Upper side of inclined layer is at top part of images. From
top left: Longitudinal rolls (LR), varicose pattern (VP), subhar-
monic resonances (SR), periodically spaced kink lines (KL),
undulations (UN) and transverse bursts (TB). Movies depicting
dynamics of UN and TB are presented in [22].

forced system for g > g% [17]. The role of transverse
modes in the destabilization of forced rolls, which was
observed recently also in [9], was not anticipated by theory
[18]. For 8 < 10°, the VP can coexist with subharmonic
resonances (SR) and periodically spaced kink lines (KL).
These share some similarity with the 1D soliton states
observed in forced electro-hydrodynamic convection with
intrinsic anisotropy [8], and explained by theory [18].
For 28° < 0 <72°, a rather large region of slowly
upward-drifting uniform undulations (UN) was observed.
Here the bifurcation was characterized by a wave vector q
with s = l.qu and a = 20°. In contrast, the correspond-
ing instability observed in the unforced case sets in at
considerably smaller 6 and & [dashed curve in Fig. 2(a)],
and is of modulational type. Furthermore, without forcing,
these patterns are defect turbulent [13]. This is an excellent
demonstration of the stabilizing effect of forcing on spa-
tiotemporal chaos. The UN became unstable, for higher
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values of &, to spatiotemporal chaos in the form of crawl-
ing rolls (CR), which were also found in the same parame-
ter regime in the unforced system [12].

‘We now turn to the high inclination angles for which the
dominant instability is shear induced. For 72° < § < 80°,
transverse bursts (TB) are observed. These were also found
in the unforced cell, but only in a narrow range of angles in
the immediate vicinity of 6., in agreement with prior
measurements [12]. For 80° < 6 <90°, as in the non-
forced case for 6> 6., a transverse roll state (TR)
emerged at € = 0 and longitudinal bursts (LB) were ob-
served for higher values of ¢.

Orthogonal forcing.—Figure 3(a) depicts the phase dia-
gram for the orthogonal case, where transverse rolls (TR)
were forced and prevailed at small € while the competing
LR were preferred at larger €. None of the states observed
immediately above the instability line of the TR was
observed in the parallel case presented in Fig. 2(a), and
the morphology of the phase diagram is completely differ-
ent. At 6 = 0, a varicose pattern (VP) was observed, as in
the parallel case. In the low inclination regime 0° < 6 <
10°, a transition was observed to a stationary rhombic
pattern [RO in Fig. 3(b)], which is spanned by wave vectors
g0 = (0, g4) and g, = s[cos(a), sin(a)] with s = 0.9¢,
and o« = 10°. We then observed, for 10° < 0 < 30°, a
bifurcation to an intriguing, stationary hexagonal structure.
This state is spanned by three wave vectors ¢, q;, and §;,
where g; = §; = q.. Here, in contrast to RO, both oblique
modes (g, and its symmetrical counterpart §,) participated
in the destabilization, and together with the forcing mode
fulfilled the resonant triad condition g, + q; + §; = 0. We
term this state hexarolls (HR) in analogy with a similar
pattern found in centrifugally driven convection [19]. With
increasing 6, the shear flow became more prevalent and
enhanced the tendency to LR. Thus, in the following large
interval of inclination angles, 30° < 8 < 75°, the TR bi-
furcated to a bimodal (BM) state, characterized by a square
structure spanned by TR and LR with wave number g;.
Note, however, that the wave number is locked, since the
constituent LR are characterized by a wave number g =
4y, instead of g = g% in the absence of forcing. Bimodal
patterns were observed in the nonforced cell only in the
vicinity 6 = 6., where the buoyancy driven (LR) and
shear flow driven (TR) destabilization mechanism become
comparable near £ = 0. Transverse forcing considerably
extends the BM region to lower inclination angles. The
steep-angle interval, 75° < # <90°, was dominated by
intriguing ‘‘heart” patterns (HP) arranged on a square
lattice, which is aligned at 45° to the forcing orientation.

Over the whole range of 6 and for higher &, where the
forcing influence is expected to diminish, secondary bifur-
cations were observed. The hexarolls were unstable to the
chaotic state of crawling rolls, which have been introduced
in the parallel forcing case. Quite interesting are the dy-
namic “‘scepter’”’ patterns (SP). Here, extended subunits
repeat periodically on a rectangular lattice, with a vertical
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FIG. 3 (color online). Orthogonal Forcing. (a) Phase diagram.
(b) Selected patterns (size of area shown as in Fig. 2): transverse
rolls (TR), rhombic pattern (RO), hexarolls (HR), bimodals
(BM), scepter-shaped patterns (SP), and heart-shaped patterns
(HP). Movies depicting dynamics of BM, SP, and HP are
presented in [22].

“superlattice” wave vector g = qf/ 2. Recall that in the
absence of forcing, one observes, at about the same & and
6, chaotic transverse bursts (TB), characterized by the
same subharmonic wave number. One could thus interpret
SP as bursts stabilized by transverse forcing.

Weakly nonlinear convection.—In the following, we
concentrate on a quantitative investigation of the amplitude
of forced longitudinal rolls for small . We show it com-
pares well with weakly nonlinear theory, essentially for the
whole buoyancy dominated range.

In line with [17], the & dependence of the amplitudes at
small corrugation heights (72 << d) can be described by
mapping the surface corrugations to a temperature modu-
lation of the bottom plate. The latter leads to a generic
analytical expression for the temperature amplitude:

(e + &9)A — go(qs. Pr)A? + g5(q7)8 = 0; (1)

here, the coefficients g, and g, are determined by theory
[9] and 6 was defined previously. The offset g, originates
from an increase of the critical temperature difference
since g # q. and from a local increase in temperature
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FIG. 4. (a) Bifurcation curve for parallel forcing at § = 20°.
The triangles and circles represent the unforced and forced
experimental data, respectively. The broken line represents the
fitted square-root law of the unforced cell, and the solid line
depicts the theoretical imperfect bifurcation curve. Small frame
shows dependency of constant term (scaled by theoretical value)
on inclination angle.

gradient due to corrugations. This experiment was done
with a cell height d = (520 = 2) um, yielding ¢, =
1.05¢%, 8 = 0.025, and &, = 0.009.

The amplitude in (1) is related to the observed shadow-
graph amplitude through the following expression [20]:

AT
Ay = G(le/qc)z(c(CIf)m o+ A), (2
where G depends on the shadowgraph setting and was
extracted by fitting the data from the unforced cell, while
the coefficient ¢ was determined by theory [20].

As a representative example, we compare in Fig. 4 the
Fourier coefficient [Ay(g.)| = 1/ for our unforced (small)
cell with the corresponding one, |A(g)|, of the forced cell,
for & = 20°. The figure shows clearly the signature of an
imperfect bifurcation near € = 0 in the latter case. With
increasing &, the impact of forcing decreases and the
curves of |Ay| and |A,| approach each other.

The average values obtained from fitting the bifurcation
data for inclination angles from 6 = 0° up to § = 60° (in
order to avoid the regime effected by shear induced insta-
bilities) are: (gg)exp = 0.03 = 0.01, (S)ey, = 0.027 =
0.001. The good agreement between the latter and the
theoretical value is encouraging. This verifies that a
small-amplitude surface corrugation can in general be
mapped to a temperature modulation of the bottom plate.
As expected, the description of longitudinal rolls via (1)
works for the entire range investigated practically with the
same parameters. This is demonstrated in the insert of
Fig. 4, where we show 6.y, as function of 6.

In the present work, we have used inclined layer con-
vection as a convenient system to study the combined

effect of different externally imposed symmetry-breaking
mechanisms. The relative weight of anisotropy due to
inclination and forcing in the form of surface corrugations
is tuned through the inclination angle 6 and relative ori-
entation angle ¢. When the preferred orientations are
parallel, the two mechanisms cooperate and stabilization
of spatiotemporal chaos is observed. However, when the
orientations are orthogonal, competing effects lead to spa-
tial resonances, which are reflected in a variety of intrigu-
ing novel states such as “heart” and ‘“‘scepter” patterns.
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