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We develop an efficient Monte Carlo algorithm, which accelerates slow Monte Carlo dynamics in

quasi-one-dimensional Ising spin systems. The loop algorithm of the quantum Monte Carlo method is

applied to the classical spin models with highly anisotropic exchange interactions. Both correlation time

and real CPU time are reduced drastically. The algorithm is demonstrated in the layered triangular-lattice

antiferromagnetic Ising model. We have obtained the relation between the transition temperature and the

exchange interaction parameters, which modifies the result of the chain-mean-field theory.
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The application of the Monte Carlo (MC) method to
condensed-matter physics has been a successful bridge
between experimental and theoretical studies [1]. The
simulation results are now quantitatively compared with
the experimental results. We may estimate various physical
parameters, predict unknown properties, and propose new
experiments on real materials. However, we encounter a
difficulty when we apply the MC method to the frustrated
systems. The MC dynamics slows down, and it becomes
very hard to reach the equilibrium states. Since frustration
has been recognized to play an important role in novel
effects of many materials,[2] we somehow have to over-
come this difficulty to study new properties, new concepts,
and new functions of such materials.

In this Letter we consider the quasi-one-dimensional
(Q1D) frustrated spin systems. The magnetic exchange
interaction of this system is highly anisotropic. The inter-
action along the c axis is much stronger than those within
the ab plane: jJcj � jJabj. The experimental realizations
of this model are the ABX3-type compounds [3–7]. The
lattice structure is the stacked triangular lattice with the
antiferromagnetic exchange interactions. There are two
reasons for the slow MC dynamics in this system. One is
frustration, and the other is the long correlation length
along the c axis. The single-spin-flip algorithm cannot
change the states of these correlated clusters. Koseki and
Matsubara [8–10] proposed the cluster-heat-bath method,
which accelerates the MC dynamics in Q1D Ising spin
systems. When we update a spin state, the transfer matrix
is multiplied along the c axis. This matrix operation takes a
long CPU time. The possible size of simulation has been
restricted to the system with jJc=Jabj ¼ 10, 36� 36�
360 spins, and 2� 106 MC steps [11]. Considering that
the ratio jJc=Jabj in real compounds is in the order of 100,
we need to develop another algorithm that improves the
simulation efficiency.

We notice that the similar slow-dynamic situation occurs
in the quantum Monte Carlo (QMC) simulation [12]. The
d-dimensional quantum system is mapped to the (dþ 1)-
dimensional classical system, on which the simulation is
performed. The additional dimension is called the Trotter

direction, and its length is called the Trotter number. The
(dþ 1)-dimensional classical system becomes equivalent
to the original d-dimensional quantum system when the
Trotter number is infinite. As the Trotter number increases,
the correlation length along the Trotter direction increases,
and the dynamics of the simulation slows down.
The simulation in the Q1D system is equivalent to the

QMC simulation if we regard the Trotter direction as the
c axis in the Q1D system. For example, the cluster-heat-
bath algorithm in the Q1D system is equivalent to the
transfer-matrix MC method [13,14] in QMC simulations.
This is the main idea of this paper. We know that the
continuous imaginary-time loop flip algorithm of QMC
simulation [15–18] is very efficient. Therefore, we apply
this QMC algorithm to the Q1D simulation. The correlated
cluster along the c axis is flipped by one update trial. We do
not suffer from the MC slowing-down due to the long
correlation length. The algorithm was successfully applied
to the theoretical analysis on the magneto-electric transi-
tions inRbCoBr3 [19]. The numerical results quantitatively
agree with the experimental results. The estimates of the
interaction parameters and proposals of new experiments
were made possible.
We consider the transverse-field Ising model in two

dimensions. The Hamiltonian is written as

H q ¼ �J
X
hj;ki

�z
j�

z
k � �

X
j

�x
j ; (1)

where �x and �z denote the Pauli spin operators, J denotes
the exchange interaction parameter, and �ð>0Þ denotes the
transverse field. The indices, j and k, denote the spin
location on the two-dimensional real-space plane through-
out in this Letter. The brackets h� � �i denote the interacting
spin pairs. We apply the Suzuki-Trotter decomposition
[12] and map the quantum system H q to the effective

classical system H c, which is written as

H c ¼
Xm
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Here, m denotes the Trotter number, � denotes the inverse
temperature, and �i;j ¼ �1 denotes the Ising spin. The

index, i, denotes the location along the Trotter direction
throughout in this Letter. The first term of this effective
classical system denotes the exchange interaction between
spins on the same Trotter slice. The second term is the
exchange interaction between spins at the same real-space
site with the different (nearest-neighbor) Trotter slice.

The effective classical system can be regarded as the
Q1D spin system:

H Q1D ¼ XLc

i¼1

�
�Jab

X
hj;ki

�i;j�i;k � Jc
X
j

�i;j�iþ1;j

�
; (3)

if we set

J ¼ mJab; (4)

� ¼ m

2�
ln coth½�Jc�; (5)

m ¼ Lc: (6)

Here, i denotes the location along the c axis, j and k denote
the location on the ab plane, and Lc denotes the linear size
along the c axis. The simulation in the Q1D system can be
substituted for the QMC simulation with J, �, and m
defined above. The sign of Jc is positive (ferromagnetic)
in this expression. In the case when it is negative (anti-
ferromagnetic), we transform it to the ferromagnetic one
by changing the spin notation as �i;j ! ð�1Þi�i;j.

Let us consider the cluster algorithm of the Q1D system.
It is the interpretation of the QMC cluster algorithm [18],
where the cluster is only defined along the Trotter direc-
tion. We define a cluster using only the Jc part of the Q1D
Hamiltonian, and consider the Jab part as the molecular
field to the cluster. We may regard this algorithm as the
Swendsen-Wang algorithm [20] in one dimension [the Jc
part in Eq. (3)] under the molecular field [the Jab part in
Eq. (3)]. The ergodicity and the detailed-balance condition
are guaranteed.

The updating procedure is as follows. First, we select
one location j on the ab plane, and consider the spins along
the c axis. We define clusters by connecting the neighbor-
ing spins (�i;j and �iþ1;j) with the following probability

pc:

pc ¼ 1� exp½�2�Jc� ð�i;j ¼ �iþ1;jÞ; (7)

pc ¼ 0 ð�i;j � �iþ1;jÞ: (8)

Let us number the cluster by I. Second, we calculate the
molecular field hI for each updating cluster I as

hI ¼
X
i2I

X
hki

Jab�i;k; (9)

where i 2 I denotes that i belongs to the cluster I, and hki

denotes that �i;k is interacting with �i;j. Finally, we flip the

cluster state with the following probability pI:

pI ¼ 1

exp½2��i;jhI� þ 1
: (10)

We independently try this flip for each cluster.
The MC correlation time is reduced by this flip but the

real CPU time rather increases because we have to do the
connecting procedures for all spins along the c axis. We
solve this problem by applying the continuous imaginary-
time cluster flip algorithm of QMC simulation [16–18]. We
neglect the discreteness of the spin location along the c
axis. This approximation is possible when both cluster
length and Lc are very long.
In the continuous version we focus on the locations of

the cluster edges. The probability that the spin pair of
�i;j ¼ �iþ1;j is not connected is

exp½�2�Jc� ¼ ��1
c ; (11)

where �c is regarded as the correlation length along the c
axis. The average cluster size coincides with the correla-
tion length �c. If we set Lc ¼ Lab�c, the system roughly
consists of L3

ab correlated clusters. It is known that the

cluster length obeys the Poisson distribution [17]. We
generate the Poisson random numbers with the mean
exp½2�Jc� and regard them the cluster length. Then, we
place the cluster edges to the c axis from bottom to top.
Combining these new-generated cluster edges and the al-
ready existing ones, we apply the cluster flip with the
probability PI. The procedure is shown in Fig. 1.
The present continuous c axis version benefits from the

memory reduction and the CPU time reduction. We need
not memorize all the spin states. Only the locations of the
cluster edges and the spin state at the bottom edge are
necessary. The total memory use and the real CPU time are

update

jj-1 j+1 jj-1 j+1

Unflipped

Flipped

Unflipped

Unflipped

Flipped

FIG. 1. The updating procedure of the continuous c axis
version. Black (white) rectangles depict the up-state (down-
state) spin clusters. The new-generated cluster edges are de-
picted by broken horizontal lines. Brackets depict the clusters to
be updated. We update each cluster state independently using the
probability pI.
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proportional to L3
ab. Those for the single-spin-flip algo-

rithm are proportional to the total number of spins, L3
ab�c.

The efficiency gain, �c, becomes exponentially large at low
temperatures.

We apply the continuous c axis cluster flip algorithm to
the stacked-triangular lattice antiferromagnetic Ising
model. It is a model system for the ABX3-type compounds
[3–7]. The Hamiltonian is written as follows.

H ¼ �2Jc
X
i;j

Si;jSðiþ1Þ;j � 2J1
X
i

Xn:n:
hjki

Si;jSi;k

� 2J2
X
i

Xn:n:n:
hjki

Si;jSi;k; (12)

where Si;j ¼ 1
2�i;j is the spin-1=2 Ising spins, and J1ðJ2Þ

denotes the nearest-neighbor (next-nearest-neighbor) ex-
change interactions within the ab plane. We consider the
case where both Jc and J1 are antiferromagnetic (Jc, J1 <
0), and J2 is ferromagnetic (J2 > 0).

It is known through theoretical analyses [10,21–23] that
successive magnetic phase transitions occur. The low-
temperature magnetic structure is the ferrimagnetic state.
There exists a partially-disordered (PD) phase between the
paramagnetic phase and the ferrimagnetic phase. In the PD
phase, one of three sublattices is completely disordered,
while the other two sublattices take antiferromagnetic
configurations. It is considered that the phase transition
between the paramagnetic phase and the PD phase is the
second-order transition. We refer to the transition tempera-
ture as TN1.

We compare the equilibration and the real CPU time of
the present algorithm with the results of the single-spin-flip
algorithm. We set Jc ¼ �97:4 K, J1 ¼ �2:44 K, J2 ¼
0:142 K, and perform the simulation at T ¼ 25 K. The
system is in the ferrimagnetic phase at this temperature.
The linear lattice size of the ab plane is set as Lab ¼ 95.
The correlation length along the c axis is roughly estimated
as �c � exp½�jJcj� ¼ 49, and the linear size along the c

axis is set as Lc ¼ Lab�c ¼ 4655. The effective number of
spins is more than 42 million. We observe the relaxation
functions of the structure factors defined as follows:

f21=3 ¼
1

8

� X
�¼�;�;�

ðm� �m�þ1Þ2
�
; (13)

f21 ¼ hðm� þm� þm�Þ2i; (14)

where m�, m�, and m� are three sublattice magnetizations

in the triangular lattice. The 1=3-structure factor, f21=3 takes

a finite value when the ferrimagnetic state or the PD state is
realized. It detects the phase transition between the PD
phase and the paramagnetic phase. The phase transition
between the PD phase and the ferrimagnetic phase is
detected by the structure factor, f1.
Figure 2 shows the relaxation functions of both structure

factors. We start the simulations from the perfect ferrimag-
netic state (f21=3 ¼ 1 and f21 ¼ 1=9, plotted with lines) and

the perfect PD state (f21=3 ¼ 3=4 and f21 ¼ 0, plotted with

symbols). The data of two algorithms converge to the same
value. It guarantees the equilibration of the simulation. The
cluster algorithm realizes the equilibrium state roughly 300
times earlier than the single-spin-flip algorithm. The con-
vergence is slow when the initial state is the PD state. In
this case, the single-spin-flip algorithm fails to reach the
equilibrium state within the present MC steps. Table I
compares the real CPU time. The present cluster algorithm
achieves simulation 15 times faster. This difference comes
from the ratio Lc=Lab ¼ �c.
We focus on the transition temperature between the

paramagnetic phase and the PD phase, TN1. The chain-
mean-field theory [21] gives the relation among TN1, J1,
and Jc, which is written as

1 ¼ exp½ jJcj
kBTN1

�
2kBTN1

ð�3J1 þ 6J2Þ: (15)

Using the present cluster algorithm we estimate TN1 for
various choices of J1=Jc ranging from 0.001 to 0.5 and
J2=Jc ranging from �0:05 to �0:0015. The behavior of
TN1 with respect to Jc, J1, and J2 is obtained. Here, the
nonequilibrium relaxation method [24] is applied. We
obtain the transition temperature by the behavior of the
relaxation functions of the structure factor, f21=3. It con-
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FIG. 2 (color online). The relaxation function of the structure
factors, f21=3 and 9f21, when the simulations start from the

ferrimagnetic state (lines) and the PD state (symbols).

TABLE I. The real CPU time for each Monte Carlo step is
compared. The simulations were performed on the Core 2 Duo
E6600 processor at 2.4 GHz using the Intel compiler.

MC steps [MCS] Cluster flip [s] Single-spin flip [s]

100 39 568

200 77 1155

500 195 2910

10000 3919 58560
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verges to the finite value when the temperature is below
TN1 and decays exponentially when the temperature is
above TN1. The algebraic decay is exhibited at TN1.

We find that most of our numerical results are well-fitted
by the following expression.

1 ¼ exp½ jJcj
kBTN1

�
2kBTN1

�
� 5

3
J1 þ 6J2

�
: (16)

Only the coefficient of J1 differs from the chain-mean-field
result. The change of the coefficient can be regarded as the
reduction of the effective coordination number [25]. The
fitting is plotted in Fig. 3. The arrows in the figure depict
the data when jJ2j ¼ jJ1j=2 for each choice of J2. The data
deviate from the relation, Eq. (16), when jJ2j> jJ1j=2.
Since the chain-mean-field relation, Eq. (15), has been
used to estimate the interaction parameter from the experi-
mental results, the present relation, Eq. (16), improves the
estimate.

We have introduced the cluster flip algorithm suitable
for the quasi-one-dimensional frustrated Ising spin sys-
tems. The numerical efficiency is improved as we lower
the temperature and/or as we increase the anisotropy ratio,
jJc=Jabj. Other algorithms mostly fail in this situation. The
realistic simulations (or emulations) for real compounds
are made possible. The quantitative MC analyses to the
experimental results may help developments in material
science. Simulations under the magnetic field are possible.
We may include the field term into the molecular field
term, hI.

The use of random number generator RNDTIK pro-
grammed by Professor N. Ito and Professor Y. Kanada is
gratefully acknowledged.
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FIG. 3 (color online). Relation between the exchange interac-
tion parameters and the transition temperature TN1 obtained by
the Monte Carlo simulation. Arrows depict the point where
jJ2j ¼ jJ1j=2 for each choice of J2=Jc. The numerical results
fall onto the single function as long as jJ2j< jJ1j=2.
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