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A century after the celebrated Langevin paper [C.R. Seances Acad. Sci. 146, 530 (1908)] we study a

Langevin-type approach to subdiffusion in the presence of time-dependent force fields. Using a

subordination technique, we construct rigorously a stochastic Langevin process, whose probability density

function is equal to the solution of the fractional Fokker-Planck equation with a time-dependent force. Our

model provides physical insight into the nature of the corresponding process through the simulated

trajectories. Moreover, the subordinated Langevin equation allows us to study subdiffusive dynamics both

analytically and numerically via Monte Carlo methods.
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The seminal works on Brownian diffusion by Einstein
[1], Langevin [2], and Smoluchowski [3] have inspired
physicists and mathematicians over the last century [4,5].
While the Fokker-Planck-Smoluchowski equation describ-
ing the time-evolution of probability density functions
(PDFs) was introduced quite early [6], a stochastic theory
for proper interpretation of the Langevin equation was
developed much later by Itô [7]. Both approaches have
been used as basic tools for studying the dynamics of
various physical systems driven by Gaussian noise.
However, recent interest in complex systems, whose dy-
namics is not described satisfactorily by the Gaussian
diffusion, gave rise to the study of anomalous diffusion
processes and, in particular, the distinct class of subdiffu-
sion processes reported in condensed phases [8], ecology
[9], and biology [10].

A common description of subdiffusive processes is in
terms of the fractional Fokker-Planck equation (FFPE)
derived from the continuous-time random walk [11]. The
study of subdiffusive dynamics in the presence of purely
time-dependent force field, giving rise to a modified FFPE,
was proposed in [12]. A similar equation was derived in
[13] for the class of dichotomously alternating forces.
Formulating the corresponding Langevin equations is es-
sential since the latter provide a detailed description of the
underlying physical processes, usually missing in experi-
mental data, leading to subdiffusion and to the FFPE. In a
recent paper [14], a model based on the Langevin equation
and a subordination technique has been proposed.
However, the problem of the equivalence of the two ap-
proaches has remained unsolved. In this Letter we fill this
gap by introducing a Langevin process and providing a
rigorous proof of the equivalence to the FFPE, namely,
having the same PDF.

The usual description of subdiffusive dynamics in the
presence of a time-independent force field FðxÞ is in terms
of the FFPE
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where wðx; 0Þ ¼ �ðxÞ. This equation was first derived in
[11], see also [8,15]. Here, the operator 0D

1��
t , 0<�< 1,

is the fractional derivative of the Riemann-Liouville type
[16], which clearly commutes with the spatial Fokker-
Planck operator. Thus, the order of both operators here is
irrelevant.
The equivalent Langevin description of the FFPE (1) is

in terms of the subordinated process [17] (see also [18–20])

YðtÞ ¼ XðStÞ; (2)

where the parent process Xð�Þ is the diffusion process
defined as the solution of the Itô stochastic differential
equation

dXð�Þ ¼ FðXð�ÞÞd�þ dBð�Þ; (3)

driven by the standard Brownian motion Bð�Þ. The sub-
ordinator St, called the inverse �-stable subordinator, is
defined as [21,22]

St ¼ inff�:Uð�Þ> tg; (4)

where Uð�Þ denotes the �-stable subordinator, i.e., the
strictly increasing Lévy motion [23] with Laplace trans-

form he�kUð�Þi ¼ e��k� . Moreover, Bð�Þ and St are as-
sumed to be independent. Since the inverse subordinator
St is non-Markovian, this property is inherited also by the
subdiffusion XðStÞ.
For the case of a time-dependent force FðtÞ, the recently

derived version of the fractional Fokker-Planck equation
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has the form [12]
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with wðx; tÞ ¼ �ðxÞ. When compared to (1), here the frac-
tional operator 0D

1��
t does not commute with the Fokker-

Planck operator, and it is essential that it appears to the
right of FðtÞ, so that it does not act on the time-dependent
force. Namely, in the time-dependent case the proper order
of the Fokker-Planck operator and the fractional operator

0D
1��
t is ‘‘first Fokker-Planck and then 0D

1��
t .’’

The derivation of the FFPE (5) was based on the gener-
alized master equation with two balance conditions: the
probability conservation in a given state and under tran-
sition between different states. In [12] the authors showed
that the moments

mnðtÞ ¼
Z 1

�1
xnwðx; tÞdx

of the solution wðx; tÞ of Eq. (5) satisfy the following
recursive relation:

dmnðtÞ
dt

¼ nFðtÞ0D1��
t mn�1ðtÞ þ nðn� 1Þ

2 0D
1��
t mn�2ðtÞ

(6)

with m0ðtÞ ¼ 1, m�1ðtÞ ¼ 0, and n 2 N. The analysis of
the first two moments m1ðtÞ and m2ðtÞ confirmed that the
systems described by (5) display two significant physical
properties, namely, the death of linear response and the
field-induced dispersion [12].

We now address the problem of the equivalent Langevin
description of the subdiffusive dynamics (5). In other
words, we ask how to define a stochastic process, whose
PDF obeys Eq. (5). Clearly, one cannot copy the scheme of
the Langevin equations (3) and (4) solving the time-
independent case. The reason is that for such a model the
force field F would vary in the random time St and not in
real time t, which cannot be physically accepted [14]. The
solution of this problem can be obtained by the proper
application of the subordination method. Let us introduce
the following subordinated Langevin equation:

ŶðtÞ ¼ X̂ðStÞ: (7)

Here, the process X̂ð�Þ is the solution of the following
stochastic differential equation:

dX̂ð�Þ ¼ FðUð�ÞÞd�þ dBð�Þ; (8)

where Uð�Þ is the strictly increasing �-stable Lévy motion
and St is its inverse defined by Eq. (4) [14]. Equations (2)
and (3) for time-independent fields and Eqs. (7) and (8) for
time-dependent fields constitute the Langevin equation
equivalent to the corresponding FFPEs, Eq. (1) and (5).

Before proving that the PDF of ŶðtÞ is the solution of (5),
let us discuss the structure of (8). When compared to the
definition (3), the crucial factor here is the process Uð�Þ,

which enters Eq. (8) based on the physical requirement that
the deterministic time-dependent force FðtÞ should not be
modified by the subordinator St. Indeed, after subordinat-

ing the process X̂ð�Þ by St, the actual force is given by
FðUðStÞÞ. Since in every jump moment we have UðStÞ ¼ t
(see [24,25]), the particle is biased by the force FðUðStÞÞ ¼
FðtÞ. Namely, the force in ŶðtÞ varies in real time t and is
not modified randomly by the subordinator St. Note that
the similar situation was reported in [13] for the case of
FFPE (5), where the fractional operator 0D

1��
t appeared to

the right of FðtÞ, in order not to modify the force.
An important advantage of the current Langevin ap-

proach is the fact that it can be easily extended to the
general case of the space-time-dependent force Fðx; tÞ.
One only needs to replace the force FðUð�ÞÞ in Eq. (8)
with the force Fðx;Uð�ÞÞ. The Langevin representation (7)
provides information about all the trajectories, which from
the mathematical point of view is the complete description
of the stochastic process.

Now, let us show that the PDF of ŶðtÞ is the solution of
(5). Because of the space limitation, only the key steps of
the proof are presented. It should be noted that the methods
and results in the case of time-dependent force vastly differ
from the space-dependent case. Our method is based on the
analysis of the moments. First, let us note that the process

ŶðtÞ can be represented as

ŶðtÞ ¼
Z t

0
Fðt1ÞdSt1 þ BðStÞ: (9)

Thus, it consists essentially of two contributions: the sto-
chastic integral depending on the external time-dependent
force, and the force-free pure subdiffusive part. Denote the
moments anðtÞ ¼ h½BðStÞ�ni and bnðtÞ ¼ h½Rt

0 Fðt1ÞdSt1�ni.
Since the Fourier transform of BðStÞ is given by the Mittag-

Leffler function heikBðstÞi ¼ E�ð�k2t�Þ [8], the moments
anðtÞ satisfy the relation

danðtÞ
dt

¼ nðn� 1Þ
2 0D

1��
t an�2ðtÞ: (10)

Taking advantage of the change of variable formula, we
obtain

�Z t

0
Fðt1ÞdSt1

�
n ¼ n!

Z t

0

Z t1

0
. . .

�
Z tn�1

0
Fðt1Þ . . .FðtnÞdStn . . . dSt1 :

Moreover, employing the theory of point processes [26],
we get for the expected value

hdStn . . . dSt1i ¼
Yn
i¼1

uðdti � tiþ1Þ;

where uðtÞ ¼ hSti ¼ t�

�ð�þ1Þ and tnþ1 ¼ 0. Therefore, the

moments bnðtÞ obey the relation
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dbnðtÞ
dt

¼ nFðtÞ0D1��
t bn�1ðtÞ: (11)

By the same method, we show that the moments ck;nðtÞ ¼
h½BðStÞ�k½

R
t
0 Fðt1ÞdSt1�ni

dck;nðtÞ
dt

¼ nFðtÞ0D1��
t ck;nðtÞ þ kðk� 1Þ

2 0D
1��
t ck�2;nðtÞ:

(12)

Finally, using Newton’s binomial expansion and the results

(10)–(12), we obtain that the moments rnðtÞ ¼ hŶnðtÞi
satisfy the recursive relation

drnðtÞ
dt

¼ nFðtÞ0D1��
t rn�1ðtÞ þ nðn� 1Þ

2 0D
1��
t rn�2ðtÞ

(13)

with r0ðtÞ ¼ 1, r�1ðtÞ ¼ 0, and n 2 N. Therefore, by (6)

and (13), the moments of the process ŶðtÞ coincide with the
moments of the solution wðx; tÞ of FFPE (5). Since the

Fourier transform of ŶðtÞ is analytical, it is determined by

the moments [27]. Thus, the distribution of ŶðtÞ must
coincide with the distribution wðx; tÞ. We conclude that

the PDF of ŶðtÞ solves (5).
The above result gives a justification of the Langevin

description of subdiffusive dynamics in the presence of
time-dependent force fields. It allows us to investigate the
properties of the trajectories using both analytical and
numerical tools. In particular, one can simulate sample

paths of ŶðtÞ and study their behavior using Monte Carlo
methods. The natural approximation of the subordinator St
[see definition (4)] has the form

Sð�Þt ¼ ðminfn 2 N:Uð�nÞ> tg � 1Þ�; (14)

where � > 0 is the step length. The ‘‘�1’’ term in the
above expression comes from the fact that we want the

process Sð�Þt to start at the origin. Consequently, the

strongly convergent approximation of the process ŶðtÞ is
given by

Ŷ ð�ÞðtÞ ¼
Z t

0
FðuÞdSð�Þu þ BðSð�Þt Þ: (15)

To simulate the process Sð�Þt , one only needs to generate the
random variables Uð�nÞ, n ¼ 1; 2; . . . . This is accom-
plished by the following recursive algorithm:

Uð0Þ ¼ 0; Uð�nÞ ¼ Uð�ðn� 1ÞÞþ �1=��n;

where �n, n ¼ 1; 2; . . . , are the i.i.d. totally skewed posi-
tive �-stable random variables. The procedure of generat-
ing realizations of �n is the following [23]:

�n ¼ sinð�ðV þ c1ÞÞ
½cosðVÞ�1=�

�
cosðV � �ðV þ c1ÞÞ

W

�ð1��Þ=�
;

where c1 ¼ �=2, the random variable V is uniformly
distributed on (��=2, �=2) and W has exponential distri-
bution with mean one.

As for the process Ŷð�ÞðtÞ, the integral in (15) can be
written as

Z t

0
FðuÞdSð�Þu ¼ �

XN
n¼1

FðUð�nÞÞ;

where N is an integer number such that Uð�NÞ< t �
Uð�ðN þ 1ÞÞ. The last sum can easily be calculated nu-
merically; therefore, the above formula allows us to simu-

late sample paths of Ŷð�ÞðtÞ. Note that the numerical
method of simulating the trajectories of Brownian motion
as well as �-stable Lévy motion is well known (see, e.g.,
[23]).
Figure 1 shows typical trajectories and nine quantile

lines of the process Ŷð�ÞðtÞ for the case FðtÞ ¼ sint.
Results were obtained using the above described simula-
tion algorithm. The flat periods in each trajectory are
typical for subdiffusion and represent long rests between
consecutive jumps of the particle. The shape of the quantile
lines is typical for the sinusoidal force.
Since the analytical solutions of FFPE (5) are not

known, one can take advantage of the corresponding
Langevin picture to find their approximations with no
restrictions to the force FðtÞ. Figure 2 presents such ap-
proximated solutions for the case FðtÞ ¼ sint, obtained by
the Monte Carlo method. The solutions were estimated
from the sample of 104 simulated trajectories of the pro-

cess Ŷð�ÞðtÞ with the help of the Rozenblatt-Parzen kernel
estimator [23]. Since no direct calculation of the solution
wðx; tÞ from the FFPE (5) is available, the simulation
results are not a corroboration of the theoretical results,
but rather an example of the usefulness and power of our
approach.
Concluding, in this Letter we have rigorously derived

the Langevin picture of subdiffusive dynamics described
by FFPE (5) with time-dependent force. Our model is

0 
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FIG. 1 (color online). Two sample paths and nine quantile
lines (10%, 20%, . . ., 90%), see [17], of the process Ŷð�ÞðtÞ for
FðtÞ ¼ sint, � ¼ 0:8, and � ¼ 0:01, obtained with the help of
the introduced simulation algorithm. The flat periods of the
process are typical for subdiffusion and represent the heavy-
tailed rests of the particle. The shape of the quantile lines
corresponds to the sinusoidal time-dependent force with the
period 2�.
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based on the combination of standard diffusion with the
proper use of subordination. To fulfill the physical require-
ment that the deterministic time-dependent force should
not be changed by the subordination, we have modified the
diffusion equation accordingly. As a result we have ob-
tained a physical model equivalent to the time-dependent
FFPE. In contrast to [13], this solves the problem concern-
ing the validity of subordination method for time-
dependent forces. By the appropriate construction of the
parent process (8) we subordinate the process without
changing the force. Therefore, F varies in the real time t.
The presented approach gives a deep physical insight into
the trajectories, providing the complete mathematical de-
scription of the non-Markovian stochastic process. This
allows us to examine the properties of subdiffusion both
analytically and numerically. Moreover, approximate so-
lutions of FFPE (5) for any form of the force are at hand.
We have described in detail the method of simulating
sample paths of the introduced process. We have presented
some numerical results obtained via Monte Carlo methods.
In particular, we have estimated solutions of the time-
dependent FFPE for the case of a sinusoidal force.
Extensions of the Langevin model to the more general
classes of noise (e.g., Lévy noises) are straightforward
[14].
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FIG. 2 (color online). Approximated solutions wðx; tÞ of the
fractional Fokker-Planck equation (5) with FðtÞ ¼ sint, � ¼ 0:8,
and � ¼ 0:01, obtained by Monte Carlo method. The solutions
were estimated from the sample of 104 simulated trajectories of
the process Ŷð�ÞðtÞ with the help of the Rozenblatt-Parzen density
estimator.
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