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The optimal discrimination of nonorthogonal quantum states with minimum error probability is a

fundamental task in quantum measurement theory as well as an important primitive in optical commu-

nication. In this work, we propose and experimentally realize a new and simple quantum measurement

strategy capable of discriminating two coherent states with smaller error probabilities than can be obtained

using the standard measurement devices: the Kennedy receiver and the homodyne receiver.

DOI: 10.1103/PhysRevLett.101.210501 PACS numbers: 03.67.Hk, 03.65.Wj, 42.50.Dv

One of the most profound consequences of quantum
mechanics is that it is impossible to construct a measure-
ment device that perfectly can discriminate between non-
orthogonal, that is, overlapping, quantum states [1].
Suppose, for example, one is given one of two a priori
known coherent states (possibly representing binary infor-
mation); then there is no physical measurement that with
certainty can identify which state was at hand due to the
intrinsic nonorthogonality of coherent states. Since perfect
discrimination without any ambiguity is impossible, the
canonical task is to construct a measurement apparatus that
maximizes the information gained or minimizes the errors
in the measurement. Such a task has received a lot of
attention due to its intricate connection with fundamental
quantum mechanics and due to its central role in optical
communication [2].

The impossibility of discriminating nonorthogonal
quantum states is, on the one hand, the engine of quantum
key distribution [3] but, on the other hand, also a hindrance
for efficient classical communication. Nonorthogonality
prevents an eavesdropper from acquiring information with-
out disturbing the state, and it leads to unwanted errors in
classical communication. The latter is, in particular, a
problem in amplification-free transmission media such
as is the case for deep space communication where the
receiver station detects low amplitude (thus largely over-
lapping) coherent states. In both communication scenarios,
however, it is desirable to perform the discrimination with
minimum error in order to obtain the larger mutual infor-
mation between sender and receiver.

The minimum error in distinguishing between two non-
orthogonal states was found in a pioneering work by
Helstrom [1,4]. Particularly for two weak coherent states,
the physical realization of the measurement was later
suggested by Dolinar [5] and a proof-of-principle experi-
ment has recently been reported [6]. Dolinar’s idea is an

extension of a much simpler scheme proposed earlier by
Kennedy [7] and achieving near-optimal performance. For
a very weak coherent state, a simple homodyne receiver is
also near-optimal. In this Letter, we propose and experi-
mentally realize a new quantum measurement that detects
binary optical coherent states with fewer errors than the
homodyne and the Kennedy receiver for all amplitudes of
the coherent states. Although the scheme is not capable of
achieving the Helstrom bound, the implementation dis-
criminates binary coherent states with an error probability
lower than the optimal Gaussian receiver, namely, the
homodyne receiver.
Consider the binary alphabet comprising two pure and

phase-shifted coherent states fj�i; j��ig occurring with
the a priori probabilities p1 and p2. The task of the receiver
is to certify with minimum error probability whether the
state was prepared in j�i or j��i using a measurement
described by the two-component positive operator-valued

measure (POVM) �̂i, i ¼ 1; 2, where �̂i > 0 and �̂1 þ
�̂2 ¼ Î. The average error probability is given by

pE ¼ p1h�j�2j�i þ p2h��j�1j � �i; (1)

where h�j�2j�i (h��j�1j��i) is the error probability of
mistakenly guessing j��i (j�i) when j�i (j��i) was
prepared. We assume � is real and p1 ¼ p2 ¼ 1=2.
According to the laws of nature, the smallest error in

discriminating the two coherent states is

pM ¼ 1
2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�4j�j2

p
Þ; (2)

which is referred to as the Helstrom bound [1,4]. This
minimum error probability can, in principle, be achieved
by using linear optics, a photon counter, and ultrafast
feedback [5] (or feedforward [8]) or, alternatively, using
a highly nonlinear unitary operation [9]. Although a very
recent proof-of-principle experiment has been made [6], its
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implementation possesses a high level of complexity.
Another much simpler and near-optimal approach is the
Kennedy receiver, in which the states fj�i; j��ig are un-
conditionally displaced to fj2�i; j0ig and the resulting
states are detected using direct photon counting repre-

sented by the elements �̂1 ¼ Î � j0ih0j and �̂2 ¼ j0ih0j.
The average error probability is given by

pK ¼ 1
2h2�j�̂2j2�i ¼ 1

2e
�4j�j2 : (3)

The simplest scheme for discriminating phase-shifted co-
herent states is, however, homodyne detection: The local
oscillator is set to enable a measurement along the excita-
tion of the coherent states, and positive measurement out-
comes identify j�i whereas negative outcomes identify

j��i. The POVMs are �̂1 ¼
R1
0 jxihxjdx and �̂2 ¼ Î �

�̂1, and the error probability is

pH ¼ 1
2½1� erfð ffiffiffi

2
p j�jÞ�: (4)

Interestingly, it has recently been proven in Ref. [10] that
the simple homodyne receiver is optimal within all pos-
sible Gaussian measurements.

The three error probabilities (2)–(4) are shown in
Fig. 1(a) by the solid black, green, and violet curves,
respectively. It is evident from the figure that for most
values of the coherent state amplitude the Kennedy re-
ceiver is better than the homodyne receiver. However, at
very low amplitudes, which is the case for quantum com-
munication and deep space communication, the simple
homodyne receiver outperforms the Kennedy receiver.

In the following, we propose a new simple receiver
which outperforms the homodyne as well as the Kennedy
receiver for all amplitudes. The new receiver is a modifi-
cation of the Kennedy receiver as sketched in
Fig. 1(b). Instead of displacing the states j�i and j��i
by �, as done in Kennedy’s approach, in our new receiver
the states are displaced by an optimized value � so as to
minimize the error probability. In Kennedy’s scheme, only

the error probability of detecting j��i by �̂1 [correspond-
ing to the second term in (1)] is minimized. However, the
sum of the two probabilities in (1) is not necessarily mini-
mized; the first term (corresponding to the probability of

detecting j�i with �̂2) is getting smaller the larger the
displacement. Thus there exist a trade-off between these
two error components, and in our new receiver we seek to
minimize the sum of the two probabilities with respect to
the displacement �. The displacement is implemented by
interfering the signal state with an auxiliary coherent state

oscillator j�ð1� TÞ�ð1=2Þi on a very asymmetric beam
splitter (with transmittance T � 1) as shown in Fig. 1(b).
The displaced state is directed to a photon counter

described by the projectors �̂1 ¼ Î � j0ih0j and �̂2 ¼
j0ih0j.
After passing the beam splitter, the signal states j��i

are transformed as j��i ! j� ffiffiffiffi
T

p
�þ �i, and the average

error probability is given by

p� ¼ 1
2 � e����ðTj�j2þj�j2Þ sinhð2�� ffiffiffiffi

T
p

��Þ; (5)

where some imperfection parameters are included:� and �
are the quantum efficiency and dark count rate of the
photon counter, respectively, and � is the visibility of the
interference at the asymmetric beam splitter.
The optimal displacement � is derived from the deriva-

tive dp�=d� ¼ 0, which gives an optimal condition:

�
ffiffiffiffi
T

p
� ¼ � tanhð2�� ffiffiffiffi

T
p

��Þ: (6)

The ideal error probability for such optimized displace-
ment receiver (� ¼ 1, � ¼ 0, and � ¼ 1) is plotted in
Fig. 1(a), and we see that its performance surpasses those
of the homodyne and Kennedy receivers. Noteworthy is the
fact that our simple receiver outperforms any Gaussian
measurement approach. A detailed theoretical account of
this new receiver is given elsewhere [10].
We proceed with a description of the experimental setup,

which is shown in Fig. 1(c). It consists of a preparation
stage, our new receiver (which can also be made to func-
tion as a Kennedy receiver), and a homodyne receiver. Our
source is a cw diode laser at 810 nm with a linewidth of
1 MHz. After passing a fiber mode cleaner (FMC), the
linearly polarized beam is split asymmetrically into two
parts to serve as a local oscillator of the homodyne receiver
(LO) and an auxiliary oscillator (AO) for state preparation
and displacement in the new receiver scheme. The signal
state (Sig) is generated in a polarization mode orthogonal
to the auxiliary mode using an electro-optical modulator:
The field amplitude of the AO is coherently transferred into

FIG. 1 (color online). (a) Comparison of the error probabilities
of the four ideal detection schemes. (b) Schematic of the
proposed receiver. Note that, in the limit of T ! 1, the interfer-
ence exactly acts as a displacement operation D̂ð�Þ.
(c) Simplified scheme of the experiment.
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the signal polarization, and the excitation is controlled by
the input voltage of the modulator. Note that the AO
remains in the polarization mode orthogonal to the signal
mode thus propagating along with the signal. After split-
ting the signal on a 50=50 beam splitter, two identical
signal states (either j�i�2 or j��i�2) are produced and
subsequently directed to the two detection schemes.

At the homodyne receiver, the signal interferes with the
local oscillator, the two resulting outputs are detected, and
the difference current is produced. This yields an inte-
grated quadrature value for each signal pulse. The overall
quantum efficiency of the homodyne receiver amounts to
�hom ¼ 85:8%; the interference contrast to the local oscil-
lator is 96:6� 0:1%, and the p-i-n diode quantum effi-
ciency is 92� 3%. The electronic noise level is more than
23 dB below the shot noise level.

The optimized displacement receiver is composed of a
displacement operation and a fiber-coupled avalanche pho-
todiode (APD) operating in gated mode thus yielding an
electronic pulse when a photon or more impinges onto it

(thus implementing the POVMs �̂1 ¼ Î � j0ih0j and

�̂2 ¼ j0ih0j). In contrast to the displacement operation
depicted in Fig. 1(b), where two spatially separated modes
interfere on a beam splitter, in our setup the two modes (the
auxiliary and the signal modes) are in the same spatial
mode but have different polarization modes [Fig. 1(b)].
The interference (and thus the displacement) is therefore
controlled by a modulator and a polarizing beam splitter.
This method facilitates the displacement operation and
yields a very high interference contrast of 99.6%. The
detection efficiency of the scheme is estimated to �on=off ¼
55%, including the transmission coefficient of the modu-
lator, the polarization optics and the fiber of 89.1%, as well
as the quantum efficiency of the APD of 63� 3%. The
latter efficiency was estimated by the APD click statistic
for an input coherent state that was calibrated by the
homodyne receiver. An optical isolator is used between
the two detection schemes to prevent backscattering of the
LO to the APD.

The signal states are generated in time windows of � ¼
800 ns with a repetition rate of 100 kHz. Several vacuum
states and signal amplitudes are tested in a repeated pulse
sequence. First, we carefully characterized the prepared
input signal. In Fig. 2(a), mean values of quadrature mea-
surements are shown for signal state ensembles with a
linearly increasing mean photon number in the signal.
The true signal amplitude is inferred using the known
quantum efficiency of the homodyne detection and the
shot noise of the vacuum states. The variance is also
calculated (shown in the inset), and it indicates that the
prepared states are practically shot noise limited corre-
sponding to a variance of 1=4; an average excess noise of
only 0.005 shot noise units is observed.

We proceed by describing the principles of the discrimi-
nation task. A PC acquires simultaneously the homodyne
and APD detection outcomes in a pulse sequence. An

example of measurements of such a sequence for � ¼
0:35 is shown in Fig. 2(b). The outcomes of the homodyne
receiver are continuous quadrature values; if the value is
positive, we guess j�i (which is a correct guess), and if the
value is negative, we guess j��i (which gives an error).
The data from the new receiver are also shown, but here the
outcomes are integers, and we use the hypothesis that if the
outcome is larger than zero, we guess j�i and otherwise
j��i. The error probability is therefore found by adding
up all of the false detections and relating it to the total
number of pulses in a sequence.
First, we investigate the effect of the displacement � on

the error rate p�. Note that the setup performs the dis-

placement by tailoring the transmission coefficient T while

keeping the AO amplitude � ¼ �ð1� TÞ�ð1=2Þ constant.
The optimal T for given � is derived from the derivative

(b)

(a)

FIG. 2 (color online). (a) The figure shows the mean value of
quadrature measurements normalized by the shot noise, i.e.,
hð�X̂�Þ2i ¼ 1=4. Data are compared to the theoretical prediction
(dashed line). The amount of excess noise originating from
imperfect state preparation is shown in the inset. (b) Raw mea-
surement data for homodyne and APD detection. In the upper
trace, the results of single shot quadrature measurements are
shown. The lower trace shows the number of click events in the
APD per pulse. The thresholds used for discrimination are shown
as red dashed lines, which lie at U ¼ 0 mV (for the quadrature
measurement) and at n ¼ 0:5 (for APD measurement).
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dp�=dT ¼ 0, which gives the optimal condition

���ð1� 2TÞ
ðj�j2 � j�j2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tð1� TÞp ¼ tanh½2�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð1� TÞp

���:

By varying �, we find that, for a wide range of signal
amplitudes, a minimal average error probability is
achieved, if j�j2 ¼ 24:7. This optimal AO power is chosen
in the following measurements. (In practice, there will
always be nonzero information leaking out from the dis-

placement operation due to the finite size of the AO.
Measuring this information slightly lowers the error.)
We record the error rate for various displacements for a

signal amplitude of j�j2 ¼ 0:16. The results are shown in
Fig. 3(a), and we clearly see that the displacement has a big
effect on the error rate. The data also show that the per-
formance of the Kennedy receiver (corresponding to
j�j2 ¼ j�j2 ¼ 0:16 and marked in the figure) is surpassed
by using a larger displacement. The dashed line represents
the theoretical prediction for the optimal model, and the
two solid lines are the error rates associated with ideal
homodyne detection (experimental comparison follows
later) and the ideal Helstrom bound. Note that the error
rate of our new receiver is lower than that of an optimal
homodyne receiver even including the error bars. In
Fig. 3(b), we present the measured error probability for
three different receivers (the homodyne receiver, the
Kennedy receiver, and the new optimized displacement
receiver) and compare the measurements with the theory.
Note that the theoretical predictions are within the error
bars of the experimental data points. The graph verifies
that, by optimizing the displacement, the performance of
the Kennedy receiver can be drastically increased. The
performance of the homodyne receiver and the optimal
displacement receiver are comparable. However, the data
set strongly indicates that the new receiver performs better
than the homodyne receiver.
In conclusion, we have experimentally demonstrated a

substantial reduction in the error rate in discriminating
binary optical coherent states by using a new detection
approach. Remarkably, the scheme beats the optimal
Gaussian approach (which is homodyning) without using
optical nonlinearities or complicated feedback. Such a
simple receiver may find a wide range of applications in
classical as well as quantum communication.
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FIG. 3 (color online). (a) Effect of displacement � on error
probability p� for a given signal amplitude j�j2 ¼ 0:16. Error

rates for the Kennedy receiver (green) and the optimal displace-
ment receiver (blue) are marked. Experimental data are com-
pared to a perfect model, without experimental imperfections
(dashed line), limits foroptimaldiscrimination (black), and homo-
dyne detection (violet). (b) Error rates for the detection schemes
versus signal amplitude (corrected for quantum efficiency). All
data points were obtained from at least 1400 measurement
trajectories. Error bars reflect the standard deviations of repeated
measurements, which are larger than the statistical errors.
Experimental data are compared to ideal receivers (solid lines)
and on/off detection schemes with experimental imperfections
(dashed lines). In the comparison of the detection schemes, we
correct for the quantum efficiency of the receivers. This can be
justified, because detection efficiency (�on=off and �HD) factors

out in the comparison between the shot noise error and quantum
limits corresponding to ideal (� ¼ 1) detection [11].
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