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The dynamical stability of dark solitons in dipolar Bose-Einstein condensates is studied. For standard

short-range interacting condensates, dark solitons are unstable against transverse excitations in two and

three dimensions. On the contrary, due to its nonlocal character, the dipolar interaction allows for stable

3D stationary dark solitons, opening a qualitatively novel scenario in nonlinear atom optics. We discuss in

detail the conditions to achieve this stability, which demand the use of an additional optical lattice, and the

stability regimes.
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The physics of Bose-Einstein condensates (BECs) is,
due to the interatomic interactions, inherently nonlinear,
closely resembling the physics of other nonlinear systems,
and, in particular, nonlinear optics. Nonlinear atom optics
[1] has indeed attracted a major attention in the last years,
including phenomena like four-wave mixing [2] and con-
densate collapse [3]. One of the major consequences of
nonlinearity is the possibility of achieving solitons in
quasi-1D BECs. Bright solitons have been reported in
BECs with s-wave scattering length, a < 0 (equivalent of
self-focusing nonlinearity) [4]. Dark solitons (DSs) have
been realized as well as in BECs with a > 0 (self-
defocusing nonlinearity) [5]. In addition, optical lattices
have allowed for the observation of gap solitons [6].

At zero temperatures, soliton stability crucially depends
on quasi-one dimensionality, which for BECs demands a
sufficiently strong transversal confinement [7]. For the case
of DSs, if the transversal size of the system becomes
comparable to the width of the DS (� healing length),
then the DS becomes dynamically unstable. This dynami-
cal instability (so-called snake instability, see Fig. 1) has
been previously studied in the context of nonlinear optics
[8]. In the context of BEC, it has been shown that this
instability leads to a strong bending of the nodal plane,
which breaks down into vortex rings and sound excitations
[9], as experimentally observed in Ref. [10]. In the pres-
ence of dissipation, thermodynamical instabilities may be
important [11], and in other cases nonlinear instabilities
may completely change the dynamics [12].

Nonlinear phenomena constitute an excellent example
of the crucial role played by interactions in quantum gases.
Until recently, typical experiments involved particles in-
teracting dominantly via short-range isotropic potentials,
which, due to the very low energies involved, are deter-
mined by the corresponding s-wave scattering length.
However, recent experiments on cold molecules [13],
atoms with large magnetic moment [14], spinor BEC

[15], and alkali-metal BEC in optical lattices [16], open a
fascinating new research area, namely, that of dipolar
gases, for which the dipole-dipole interaction (DDI) plays
a significant role. The DDI is long-range and anisotropic
(partially attractive), and leads to fundamentally new phys-
ics in ultra cold gases [17]. Time-of-flight experiments in
Cr BEC have allowed for the first observation of DDI
effects in cold gases [18], which have been remarkably
enhanced by means of Feshbach resonances [19].
Dipolar gases present a rich nonlinear physics, since the

DDI leads to nonlocal nonlinearity, similar as that encoun-
tered in plasmas [20], nematic liquid crystals [21], thermo-
optical materials [22], and photo-refractive crystals [23].
Nonlocality leads to a wealth of novel phenomena in non-
linear physics, as the modification of modulation instabil-
ity [24], the change of the soliton interaction [25], and the
stabilization of azimuthons [26]. Particularly interesting is
the possibility of stabilization of localized waves in cubic
nonlinear materials with a symmetric nonlocal nonlinear
response [27]. Multidimensional solitons have been experi-
mentally observed in nematic liquid crystals [28] and in
photo-refractive screening solitons [29]. Recently, we
showed that 2D bright inelastic solitons may be generated
in dipolar BEC [30]. Other ways of stabilizing multidimen-
sional solitons, not involving DDI, have been recently
proposed [31].
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FIG. 1. Density plot of the Snake Instability: The Dark Soliton
at t ¼ 0 starts to oscillate and eventually breaks.
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In this Letter, we show that the long-range character of
the DDI may have striking consequences for the stability of
DSs in dipolar BECs. Contrary to usual BECs, for which,
as mentioned above, DSs become unstable when departing
from the 1D condition, the DDI may stabilize DSs in a 3D
environment. This stabilization is purely due to the long-
range and anisotropic characters of the DDI. We study in
detail the conditions for this stabilization, and the stabili-
zation regimes.

In the following, we consider a dipolar BEC of particles
with mass m and electric dipole d (the results are equally
valid for magnetic dipoles) oriented in the z-direction by a
sufficiently large external field, and that hence interact via
a dipole-dipole potential: Vdð ~rÞ ¼ �d2½1� 3cos2ð�Þ�=r3,
where � is the angle formed by the vector joining the
interacting particles and the dipole interaction. The coef-
ficient � can be tuned within the range �1=2 � � � 1 by
rotating the external field that orients the dipoles much
faster than any other relevant time scale in the system [32].
At sufficiently low temperatures, the physics of the dipolar
BEC is provided by the nonlocal nonlinear Schrödinger
equation (NLSE):
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where g ¼ 4�@2a=m, with a the s-wave scattering length
andm the particle mass. For reasons that will become clear
below, the BEC is assumed to be in a 2D optical lattice,
Volðx; yÞ ¼ sER½sin2ðqlxÞ þ sin2ðqlyÞ�, where ER ¼
@
2q2l =2m is the recoil energy, ql is the laser wave vector,

and s is a dimensionless parameter providing the lattice
depth. In the tight-binding regime (i.e., for a sufficiently
strong lattice but still maintaining coherence), we may
write �ð ~r; tÞ ¼ �i;jwijðx; yÞc i;jðz; tÞ, where wijðx; yÞ is

the Wannier function associated to the lowest energy
band and the site located at (bi, bj), with b ¼ �=ql.
Substituting this ansatz in Eq. (1), we obtain a discrete
NLSE [33]. We may then return to a continuous equation,
where the lattice is taken into account in an effective mass
along the lattice directions and in the renormalization of
the coupling constant [34].
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where ~g ¼ b2g
R
wðx; yÞ4dxdyþ gdC [35], with gd ¼

�8�d2=3, m� ¼ @
2=2b2J is the effective mass, and J ¼R

dxdywijðx; yÞ½�ð@2=2mÞr2
~� þ Volðx; yÞ�wi0j0 ðx; yÞ, for

neighboring sites (i, j) and (i0, j0). The validity of Eq. (2)
is limited to radial momenta k� � 2�=b, in which one can

ignore the discreteness of lattice. In addition, the single-
band model breaks down if the gap to the second band

becomes comparable to other energy scales (m=m� ! 1).
In the following, we use the dimensionless parameter � ¼
gd=~g that characterizes the strength of the DDI compared
to the short-range interaction.
Because of its partially attractive character, the stability

of a dipolar BEC is a matter of obvious concern [17].
Bogoliubov analysis of an homogeneous dipolar BEC
gives the dispersion relation for quasiparticles is of the

form �ð ~kÞ ¼ fEkinð ~kÞ½Ekinð ~kÞ þ Eintð ~kÞ�g1=2, where Ekin ¼
@
2k2�=2m

� þ @
2k2z=2m is the kinetic energy, and Eint ¼

2½gþ ~Vdð ~kÞ�n0 is the interaction energy, which includes

both short-range and dipolar parts. Note that ~Vdð ~kÞ ¼
gd½3k2z=j ~kj2 � 1�=2 (Fourier transform of the DDI) may

be positive or negative, and hence for low momenta ð ~k !
~0Þ, the dynamical phonon instability is prevented if �1<

�< 2. If gd > 0, phonons with ~k lying on the xy plane are

unstable if �> 2, while for gd < 0 phonons with ~k along z
are unstable if �<�1 [36].
In this Letter, we are concerned about the stability of a

DS in a 3D dipolar BEC. We assume that the DS lies on the
xy plane; hence, the solution can be written as �0ð~r; tÞ ¼
c 0ðzÞ exp½�i�t=@�, where � is the chemical potential.
Introducing this expression into Eq. (1), we obtain a 1D
NLSE in z of the form

�c 0ðzÞ ¼
�
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�
c 0ðzÞ: (3)

Since c 0 is independent of x and y, in Eq. (3) the DDI just
regularizes the value of the local coupling constant �g ¼
~gþ gd. Equation (3) allows for a simple solution describ-
ing a DS, c 0 ¼ ffiffiffiffiffi

n0
p

tanhðz=�Þ, where � ¼ @=
ffiffiffiffiffiffiffiffiffiffiffiffi
m �gn0

p
is

the corresponding healing length and n0 is the bulk density.
We study the DS stability by means of a Bogoliubov

analysis, considering a transversal perturbation in the nodal
plane, �ð~r; tÞ ¼ �0ð ~r; tÞ þ 	ð~r; tÞ expð�i�t=@Þ, where
	ð~r; tÞ ¼ uðzÞ exp½ið ~q � ~�� �t=@Þ� þ vðzÞ exp½�ið ~q � ~��
�t=@Þ�, where q is the momentum of the transverse modes
with energy �. Introducing this ansatz into (1) and linear-
izing in 	, one obtains the Bogoliubov-de Gennes (BdG)
equations for the excitation energies � and the correspond-
ing eigenfunctions f� ¼ u� v:
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The lowest eigenvalue �ðqÞ for each q provides the disper-
sion law. Note that the DDI has two main effects: (i) it leads
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to a regularized �g, and (ii) it introduces a qualitatively new
term in the second line of Eq. (4). Whereas the first effect
leads to a quantitative modification of the DS width, the
second effect is a purely dipole-induced nonlocal effect,
which, as we show below, may lead to remarkable con-
sequences for the DS stability.

When � ¼ 0 (no DDI) and m=m� ¼ 1 (no lattice), we
recover the BdG equations obtained in the case of standard
short-range interacting BECs [7]. It has been shown that in
that case the dispersion law �ðqÞ is purely imaginary for
q� < 1 (Fig. 2). Hence, DSs in homogeneous 3D short-
range interacting BECs are dynamically unstable against
transverse modulations. Because of this instability, the
nodal plane acquires a characteristic snakelike bending.
This so-called snake instability (see Fig. 1) has been ex-
perimentally observed in nonlinear optics [8] and recently
in the context of BEC [10]. In the latter case, the bending
results in the decay of a DS into vortex rings and sound
excitations [9]. In the presence of a 2D lattice, we found by
means of the model developed in Ref. [34] that the DS
remains dynamically unstable (see Fig. 3).

In the presence of DDI (� � 0) but without lattice
(m=m� ¼ 1), the transverse instability persists since �ðqÞ
remains imaginary for q� < 1. For �> 0 (�< 0), j�ðqÞj
decreases (increases) when j�j grows (Fig. 2). The situ-
ation can change dramatically in the presence of both the
DDI and a lattice. Surprisingly, for sufficiently large di-
poles and smallm=m�, �ðqÞ becomes real and hence the DS
becomes dynamically stable (see Fig. 4). This remarkable
fact can be understood by analyzing the surface tension of
the nodal plane. First, we notice that for low momenta �ðqÞ
is always linear in q, suggesting the idea that for low
momenta, the nodal plane may be described by an elastic

model with Lagrangian density, Lð@
=@t; ~r
Þ ¼
ðM=2Þð@
=@tÞ2 � ð�=2Þj ~r
j2, where 
 is the displace-
ment field of the nodal plane from the ground state, M is
the mass per unit area, and � plays the role of a surface
tension. By expanding the energy of a moving soliton up to

second order in the velocity, we obtain the soliton mass

M ¼ �4@n0=c, where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gn0=m

p
is the sound velocity.

Note thatM< 0. We calculate � by inserting a variational

ansatz �varð~rÞ ¼ ffiffiffiffiffi
n0

p
tanhf½z� ffiffiffi

2
p

� cosðqxÞ�=�g (a trans-
verse modulation of the nodal plane with amplitude � and
momentum q) in the energy functional and expanding up to
second order in � and q:

� ¼ 4n0@
2=3�m� � 2gdn

2
0�: (6)

This expression can be considered as one of the main
results of this Letter. The eigenmodes, �2=@2 ¼ !2 ¼
ð�=MÞq2, which provide the low-energy linear excitations
of the DS, can be either purely real or purely imaginary,
crucially depending on the sign of �=M. In the absence of
DDI (� ¼ 0), � is always positive, the modes are purely
imaginary, and hence the DS shows snake instability for
any value of m=m� (4). The stabilization hence is a char-
acteristic feature introduced by the DDI. Note that for � ¼
0 andm=m� ¼ 1, our result coincides with the one found in
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FIG. 2. Numerical results for the imaginary part of the excita-
tion energies of a DS form=m� ¼ 1, and � ¼ 0 (triangles),�0:5
(squares), and 1 (circles). Solid lines correspond to the analytical
result for low momenta.
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FIG. 3. Numerical results for the imaginary part of the excita-
tion energies of a DS for � ¼ 0, and m=m� ¼ 0:2 (squares), 0.1
(triangles), and 0.05 (circles). Solid lines correspond to the
analytical result for low momenta.
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FIG. 4. Real part of the excitation energies of a DS for
m=m� ¼ 0:1 and � ¼ 1:6. Solid line corresponds to the analyti-
cal result for low momenta while empty circles correspond to
numerical results.
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Ref. [7]. In the absence of an additional optical lattice, the
dynamical instability of the DS at low q disappears for�>
2, i.e., for situations for which the homogeneous dipolar
BEC as a whole is itself, as commented above, unstable
against local collapses. Increasing the depth of the lattice
potential reduces the role of the kinetic energy term
ðm=m�Þq2 in Eqs. (4) and (5) [or equivalently reduces the
first term in Eq. (6)] and hence enhances the role of DDI. A
sufficiently large DDI or small m=m� < ðm=m�Þcr ¼
3�=2ð1þ �Þ leads to stable low-energy (q ! 0) linear
excitations. We have confirmed that this analytical result
coincides with our results obtained from BdG Eqs. (4) and
(5). When m=m� decreases further or � grows, a wider

regime of momenta up to q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

� � 1 is stabilized
(Fig. 4). Indeed, direct numerical simulations of Eq. (2)
show that the dark nodal plane becomes completely stable
against snake instability, whereas under the same condi-
tions, the DS is unstable in absence of DDI. Instabilities

may appear for momenta q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

� � 1, but this large-
momentum instability is typically irrelevant, since for
sufficiently small m=m� it concerns momenta much larger
than the lattice momentum. Although our effective mass
theory breaks down for such momenta, it becomes clear
that such high momentum instabilities are physically pre-
vented by the zero point oscillations at each lattice site
[37].

Summarizing, contrary to short-range interacting BECs,
where snake instability is just prevented by a sufficiently
strong transverse confinement, dipolar BECs allow for
stable dark solitons of arbitrarily large transversal sizes
(dissipation would eventually lead to thermodynamical
instability [11] whose detailed analysis, as well as that of
quantum instabilities [38], demands a separate work). We
have obtained the stability conditions, which demand a
sufficiently large dipole and a sufficiently deep optical
lattice in the nodal plane. We stress that the stabilization
of nodal planes against snake instability is purely linked to
the long-range nature of the DDI, opening a qualitatively
new scenario in nonlinear atom optics.
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