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We show that there are Bell-type inequalities for noncontextual theories that are violated by any

quantum state. One of these inequalities between the correlations of compatible measurements is

particularly suitable for testing this state-independent violation in an experiment.
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Because of the lack of spacelike separation between one
observer’s choice and the other observer’s outcome, the
immense majority of the experimental violations of Bell
inequalities does not prove quantum nonlocality, but just
quantum contextuality. Bell inequalities can only be vio-
lated by entangled states. However, in principle, Bell-type
inequalities for noncontextual theories might be violated
by any quantum state.

Bell’s theorem states that no theory of local hidden
variables can reproduce quantum mechanics (QM) [1]. It
is proven either by the violation of a Bell inequality [1,2] or
by a logical contradiction between the LHV predictions
and those of QM [3]. Bell inequalities have some ad-
vantages. They are independent of QM, testable in experi-
ments, and have applications in communication com-
plexity [4], entanglement detection [5], security of key
distribution [6], and quantum state discrimination [7].
Any proof of Bell’s theorem is state dependent: it is valid
for some states but not for others.

Local hidden variable theories are a special type of
noncontextual hidden variable (NCHV) theories, defined
as those where the expectation value of an observable A is
the same whether A is measured with a compatible observ-
able B, or with a compatible observable C, even though B
and C are incompatible. The Kochen-Specker (KS) theo-
rem states that no NCHV theory can reproduce QM [8–10].
The KS theorem is proven by a logical contradiction [10–
16]. These proofs apply to systems described by Hilbert
spaces of dimension d � 3 and are state-independent (i.e.,
valid for any state). Quantum contextuality is related to
quantum error correction [17], random access codes [18],
quantum key distribution [19], one-location quantum
games [20], and entanglement detection between internal
degrees of freedom.

The differences between the proofs of Bell’s and the KS
theorems lead to the question of what is the connection
between them. It has been shown [21–23] that any proof of
the KS theorem can be converted into a proof of impossi-
bility of ‘‘elements of reality’’ [24]. Some proofs of the KS
theorem can be converted into logical proofs of Bell’s
theorem [12,14] which can be translated into Bell inequal-
ities [25].

The differences between the proofs are also in the
heart of the controversy on whether experimental tests of

the KS theorem make sense [26] or are even possible if
the finite precision of measurements is taken into account
[27–36].
As a result of these debates, two types of inequalities to

test quantum contextuality have been proposed. On one
hand, there are ‘‘KS inequalities’’ [33,34], which are based
on the assumption of contextuality and on some QM
predictions, and therefore are not independent of QM. On
the other hand, there are inequalities that are based only on
the assumption of noncontextuality, in the same way that
the Bell inequalities are based only on the assumption of
locality. These inequalities are independent of QM and
testable in experiments. There are recent proposals for
testing inequalities of this type in different physical sys-
tems [37–39]. However, the fact that all these inequalities
are state-dependent, while the proofs of the KS theorem are
state-independent, has been recently described as ‘‘a draw-
back’’ [38]. A natural question is the following: Given a
physical system described in QM by a Hilbert space of
dimension d, is it possible to derive experimentally testable
inequalities using only the assumption of noncontextuality,
such that any quantum state violates them?
We describe the first inequalities of this type. Each of

them is valid for a value of d, and all of them share a
curious property. Then, we will discuss how these inequal-
ities may be tested, and whether the state-independent
violation predicted by QM can be observed in actual
experiments.
First inequality.—Suppose that Aij is an observable with

two possible results: �1 or þ1, and two observables Aij

and Akl are compatible if they share a subindex (i.e., i ¼ k,
or i ¼ l, or j ¼ k, or j ¼ l). When we prepare an ensemble
of systems and measure 4 compatible observables Aij, Aik,

Ail, and Aim in each system, hAijAikAilAimi denotes the

average of the products of their results. In any theory of
NCHV in which the observables Aij have definite results,

the following inequality must be satisfied:

�hA12A16A17A18i�hA12A23A28A29i�hA23A34A37A39i
�hA34A45A47A48i�hA45A56A58A59i�hA16A56A67A69i
�hA17A37A47A67i�hA18A28A48A58i�hA29A39A59A69i�7:

(1)
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This can be proven as follows. We define
�¼�A12A16A17A18� . . .�A29A39A59A69. If we generate
all the 218 possible values of �, we will find that � ¼ 7 is
the maximum. Therefore, if we can measure � on different
systems, the average satisfies h�i � 7. We cannot measure
� on a single system, because � contains incompatible
observables. However, since we are assuming that each Aij

would give the same result in any context, we can measure
subsets of compatible observables on different subensem-
bles prepared in the same state, and then inequality (1) is
valid for the averages over each subsensemble. This deri-
vation is similar to a standard derivation of a Bell inequal-
ity. The only difference is that in a Bell inequality we
assume that the result of a measurement of A12 is indepen-
dent of spacelike separated measurements, while here we
assume that it is independent of compatible measurements.

Now consider a physical system described by a Hilbert
space of dimension d ¼ 4 (e.g., two qubits or a single
spin-3=2 particle), and the observables represented by the
operators

Aij ¼ 2jvijihvijj � 1; (2)

where vij is a unit vector and 1 denotes the identity. Each

observable Aij has two possible results:�1 orþ1. If vij is

orthogonal to vik, then Aij and Aik are compatible.

Therefore, 4 orthogonal vectors define 4 compatible ob-
servables. 18 vectors vij with the orthogonality relations

assumed in inequality (1) are presented in Fig. 1.
Let us prove that, for d ¼ 4, QM violates (1) for any

state. According to QM, if one measures on the same
system 4 compatible observables Aij corresponding to 4

orthogonal vectors vij, the product of their 4 results will

always be �1, because AijAikAilAim ¼ �1. Therefore,

using the vectors of Fig. 1, QM predicts that the experi-
mental value of the left-hand side of inequality (1) must be

9 in any state, which is clearly beyond the bound for any
description based on noncontextual hidden variables.
Relation to previous results.—The 18 vectors in Fig. 1

have also be used for a proof of the KS theorem [16], in
which it is assumed: (I) that the observables represented by
the projectors jvijihvijj have noncontextual results 0 or 1,

and (II) that the results of 4 compatible projectors are one 1
and 3 zeroes (a QM prediction). A simple parity argument
proves that it is impossible to assign values satisfying both
(I) and (II): There are 9 (an odd number) complete sets of
projectors, while each projector appears in two (an even
number) of them [16]. Here we have used the 18 vectors of
Fig. 1 for a different purpose: (1) is an experimentally
testable inequality, not a proof by contradiction.
Other interesting relation of inequality (1) to previous

results is the following. In Ref. [38] there is a state-
dependent inequality for testing NCHV theories in systems
of d ¼ 3 (e.g., spin-1 particles). Inequality (5) in Ref. [38]
can be expressed as

� hA12A18i � hA12A23i � hA23A34i
� hA34A48i � hA18A48i � 3: (3)

Using the observables Aij defined before, it is easy to see

that, for the state ðcos0:3; sin0:3Þ � ðcos0:7;� sin0:7Þ, the
left-hand side of (3) is 3.6. Therefore, this two-qubit state
violates inequality (3). However, other states, e.g., the state
ð1; 0Þ � ð1; 0Þ, do not violate it. The interesting observation
is that inequality (3) is a particular case of inequality (1): It
can be obtained from (1) by replacing 13 out of the 18
observables Aij with identities. While (3) is a state-

dependent inequality for systems of d ¼ 3 and d ¼ 4 [38],
(1) is a state-independent inequality for systems of d ¼ 4.
Note that (1) contains several inequalities like (3).
Second inequality.—Suppose that Pij, with i 2 f1; 2; 3g

and j 2 f4; 5; 6g, is an observable with two possible results:
�1 orþ1, and two observables Pij and Pkl are compatible

if they share a subindex. Using the method described
before, it can be easily proved that any NCHV theory in
which the observables Pij have definite results satisfies the

following inequality:

hP14P15P16i þ hP24P25P26i þ hP34P35P36i þ hP14P24P34i
þ hP15P25P35i � hP16P26P36i � 4: (4)

However, if we consider a two-qubit system and choose the
following observables:

P14 ¼ Z1; P15 ¼ Z2; P16 ¼ Z1 �Z2; (5a)

P24 ¼ X2; P25 ¼ X1; P26 ¼ X1 �X2; (5b)

P34 ¼ Z1 �X2; P35 ¼ X1 �Z2; P36 ¼ Y1 �Y2; (5c)

where, e.g., Z1 denotes �
ð1Þ
z , the Pauli matrix Z of qubit 1,

then, according to QM, the left-hand side of (4) must be 6,
since P14P15P16¼P24P25P26¼P34P35P36¼P14P24P34¼
P15P25P35¼�P16P26P36¼1. Therefore, QM violates in-
equality (4) for any two-qubit state.

FIG. 1 (color online). Each dot represents a unit vector vij.
Each of the 6 sides of the regular hexagon and each of the
3 rectangles contains only orthogonal vectors. Note that, for
clarity’s sake, most labels have no unit length.
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Relation to previous results.—The observables (5a)–(5c)
have been used in the proof of the KS theorem for two-
qubit systems proposed by Peres and Mermin [11,12,14].
This proof is also based on a parity argument. Again, a
testable inequality is connected to a KS proof by contra-
diction based on a parity argument.

Other interesting connections of inequality (4) to some
recent results are the following. In Ref. [37] there is a state-
dependent inequality for testing quantum contextuality in
two-qubit systems. Inequality (4) in Ref. [37] can be ex-
pressed as

� hP14P15i � hP24P25i � hP34P35i þ hP14P24P34i
þ hP15P25P35i � 3: (6)

According to QM, for the singlet state, the left-hand side of
inequality (6) is 5 [37]. What is interesting is that inequal-
ity (6) is a particular case of inequality (4), when P16, P26,
and P36 are replaced with �1.

Moreover, the recent proposal for testing quantum con-
textuality in two-qubit systems in Ref. [39] can be refor-
mulated as the following inequality:

hP14P15P16i þ hP24P25P26i þ hP34P35i þ hP14P24P34i
þ hP15P25P35i � hP16P26i � 4; (7)

which is maximally violated by the product state

j�ð1Þ
y ¼ þ1i � j�ð2Þ

y ¼ þ1i. Inequality (7) is a particular
case of inequality (4) when P36 is replaced with 1. The fact
that a product state violates inequality (7) is not surprising,
since any state violates inequality (4).

Finally, if P15 ¼ P25 ¼ P34 ¼ P35 ¼ P36 ¼ 1, then in-
equality (4) becomes

hP14P16i þ hP24P26i þ hP14P24i � hP16P26i � 2; (8)

which has the same structure of the Clauser-Horne-
Shimony-Holt Bell inequality [2].

Third inequality.—Suppose that the 4þ 2n observables
A1; . . . ;A4;B1; . . . ;Bn; C1; . . . ; Cn, with n (odd) �3,
have only two possible results: �1 or þ1. Assuming that
each of the following averages contains only compatible
observables, using the method described before, it can be
easily seen that any NCHV theory satisfies the following
inequality:

�
A1B1B2

Yn
i¼3

Bi

�
þ

�
A2B1C2

Yn
i¼3

Ci

�

þ
�
A3C1B2

Yn
i¼3

Ci

�
þ

�
A4C1C2

Yn
i¼3

Bi

�

� hA1A2A3A4i � 3: (9)

However, if we consider an n-qubit system, with n (odd)
� 3, and choose the following observables:

A1 ¼ Z1 � Z2 � Z3 � . . . � Zn; (10a)

A2 ¼ Z1 � X2 � X3 � . . . � Xn; (10b)

A3 ¼ X1 � Z2 � X3 � . . . � Xn; (10c)

A4 ¼ X1 � X2 � Z3 � . . . � Zn; (10d)

Bi ¼ Zi; (10e)

Ci ¼ Xi; (10f)

then, according to QM, the left-hand side of inequality (9)
must be 5 since, A1B1B2

Q
n
i¼3Bi¼A2B1C2

Q
n
i¼3Ci¼

A3C1B2

Q
n
i¼3Ci¼A4C1C2

Q
n
i¼3Bi¼�A1A2A3A4¼

1. Therefore, QM violates inequality (9) for any n-qubit
state with n (odd) � 3.
Relation to previous results.—For n ¼ 3, the observ-

ables (10a)–(10f) have been used in a proof of the KS
theorem for 3-qubit systems proposed by Mermin [12,14].
Again, Mermin’s KS proof is a proof by contradiction
based on a parity argument.
On the other hand, taking A1 ¼ A2 ¼ A3 ¼

�A4 ¼ �1, inequality (9) becomes

�
B1B2

Yn
i¼3

Bi

�
þ

�
B1C2

Yn
i¼3

Ci

�
þ

�
C1B2

Yn
i¼3

Ci

�

�
�
C1C2

Yn
i¼3

Bi

�
� 2: (11)

What is interesting is that inequality (11) is not only a state-
dependent inequality to test quantum contextuality, but
also a Bell inequality. Indeed, for n ¼ 3, inequality (11)
is the 3-party Bell inequality discovered by Mermin [25].
For higher values of n, inequality (11) is not the Mermin
inequality [25], but a new Bell inequality.
Experimental violation.—Observing the state-

independent violation predicted by QM in an actual ex-
periment is a major challenge for the near future.
Inequality (4) seems particularly suitable for that purpose,
since most of the requirements for the experiment have
been addressed, at least in the case where the physical
system is a two-qubit system consisting of the spatial and
spin components of a single neutron [37]. Other possibility
is using the polarization and path degrees of freedom of a
single photon [36]. Using the polarization of two photons,
as proposed by [39], requires further investigation in order
to fulfill all the requirements of the experiment.
To test inequality (4), one has to prepare a specific two-

qubit quantum state (e.g., a maximally entangled state),
measure, e.g., P14, P15, and P16, then prepare another
system in the same state and measure, e.g., P24, P25, and
P26, and repeat these measurements many times, until
enough data have been obtained to calculate the 6 mean
values in (4) and the experimental value of the Bell opera-
tor for this state.
Then, one has to repeat the experiment with different

states (e.g., a partially entangled state, a product state, and
a maximally mixed state). The violation predicted by QM
is the same for every state.
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There are two requirements for these experiments to be
considered legitimate state-independent tests of quantum
contextuality: (a) The experimental apparatus used for
measuring, e.g., P14 must be the same when P14 is mea-
sured together with P15 and P16, and when it is measured
together with P24 and P34, and must be the same for any
state. (b) Every observable must be measured in different
contexts. For a more detailed discussion, see [37].

Conclusions.—We have introduced 3 experimentally
testable inequalities valid for any NCHV theory and vio-
lated by any quantum state. They combine the most cele-
brated properties of the Bell inequalities, independence of
QM and experimental testability, with state independence,
the most celebrated property of the KS theorem. One of
these inequalities seems particularly suitable to experimen-
tally test the state-independent violation predicted by QM.

The connection of these inequalities to previous proofs
of the KS theorem and previous state-dependent inequal-
ities gives a new insight on the relationship between the
two main theorems of impossibility of hidden variables in
QM. Each of the 3 introduced state-independent inequal-
ities is related to a proof of the KS theorem based on a
parity argument. An open question is whether similar state-
independent inequalities can be developed for physical
systems where no proofs of the KS theorem based on a
parity argument are known. Specifically, an interesting
open problem is finding a state-independent inequality
based only on the assumption of noncontextuality for the
case d ¼ 3.

The author acknowledges support from projects
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M. Żukowski, and H. Weinfurter, Phys. Rev. Lett. 100,
200407 (2008).

[8] E. P. Specker, Dialectical Anthropology 14, 239 (1960).
[9] J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
[10] S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
[11] A. Peres, Phys. Lett. A 151, 107 (1990).
[12] N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990).
[13] A. Peres, J. Phys. A 24, L175 (1991).
[14] N. D. Mermin, Rev. Mod. Phys. 65, 803 (1993).
[15] A. Peres, Quantum Theory: Concepts and Methods

(Kluwer, Dordrecht, 1993).
[16] A. Cabello, J.M. Estebaranz, and G. Garcı́a-Alcaine,

Phys. Lett. A 212, 183 (1996).
[17] D. P. DiVincenzo and A. Peres, Phys. Rev. A 55, 4089

(1997).
[18] E. F. Galvão, Ph.D. thesis, Oxford University, 2002.
[19] K. Nagata, Phys. Rev. A 72, 012325 (2005).
[20] N. Aharon and L. Vaidman, Phys. Rev. A 77, 052310

(2008).
[21] P. Heywood and M. L.G. Redhead, Found. Phys. 13, 481

(1983).
[22] A. Cabello, Phys. Rev. Lett. 86, 1911 (2001).
[23] A. Cabello, Phys. Rev. Lett. 87, 010403 (2001).
[24] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[25] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).
[26] A. Cabello and G. Garcı́a-Alcaine, Phys. Rev. Lett. 80,

1797 (1998).
[27] D. A. Meyer, Phys. Rev. Lett. 83, 3751 (1999).
[28] A. Kent, Phys. Rev. Lett. 83, 3755 (1999).
[29] R. Clifton and A. Kent, Proc. R. Soc. A 456, 2101 (2000).
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[33] C. Simon, Č. Brukner, and A. Zeilinger, Phys. Rev. Lett.

86, 4427 (2001).
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