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We study the effect of dumbbell-like counterions on the interactions between similarly charged

surfaces. Via a systematic study using Monte Carlo simulations and field theory, we fully consider

electrostatic correlations and ion structure and find that their intricate coupling determines the equilibrium

phase behaviors. In particular, an energetic bridging mechanism is revealed to cause surface attractions for

a finite range of surface separations, even in the Poisson-Boltzmann limit.
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The role of ions in solution mediating interactions be-
tween charged objects is a subject of fundamental impor-
tance in a multitude of industrial processes and biological
systems. A classical approach based on the mean field
Poisson-Boltzmann (PB) theory has been used to explain
many interesting features. Yet, due to the complexity of
systems with Coulomb interactions, a complete under-
standing is still lacking. For instance, like-charge attrac-
tions in the presence of multivalent counterions [1] cannot
be interpreted by the PB theory. There have been several
attempts toward achieving a better understanding by in-
cluding factors discarded in PB theory, e.g., steric effects
[2], nonuniform dipolar features of solvent molecules [3],
and the counterion correlations [4,5].

For certain multivalent ions, the separations between
charges in an ion are too large to be ignored, leading to
breakdown of the pointlike picture of ions assumed in the
PB theory [6]. Furthermore, the internal structure of a
dumbbell-like counterions has been shown to have consid-
erable influence on virus condensation [7] and phase equi-
libria of electrolytes [8]. It is also known that DNA
condensation is effectively driven by short stiff polyamines
such as spermine and spermidine which can be viewed as
rodlike ions [9]. In this respect, ion structure is anticipated
to play a crucial role in the interactions between charged
bodies. In this Letter, we address this problem and present
a systematic study on a system consisting of two likely
charged plates and dumbbell-like counterions as a minimal
model for ions with an internal structure. In fact, by
adopting a similar model for divalent rodlike ions,
Bohinc et al. obtained a PB equation valid in the limit of
small rod size [10]. The electrostatic correlations for an
arbitrary dumbbell size still need to be considered for a
comprehensive picture. To this end, we perform extensive
Monte Carlo (MC) simulations for a wide range of parame-
ter space. In parallel, we formulate a field theory that
extends the PB and strong-coupling (SC) theories for point
charges [5] to the case of dumbbell-like counterions. We
find that the rods oriented perpendicular to the surface,

forming a bridging configuration across the midplane,
energetically pull the surfaces even in the PB regime. At
intermediate coupling strengths, the bridging effect con-
tinues to exist and interplays with electrostatic correlation.
In the strong-coupling limit, it becomes insignificant, and
in turn electrostatic correlations prevail.
Consider N dumbbell-shaped counterions distributed

between two like-charged surfaces with surface charge
density � and intersurface distance D. We model a single
dumbbell ion by two q-valent point charges separated by a
fixed distance d, and introduce the ion number density
operator �ðrÞ ¼ P

N
j¼1½�ðr� rjÞ þ �ðr� rj � djÞ� with

dj ¼ d�̂j where �̂j is a unit vector indicating the dumb-

bell orientation. The electrostatic Hamiltonian of the sys-
tem is

H e ¼ H =kBT ¼ ‘B
2

Z
drdr0QðrÞvðr; r0ÞQðr0Þ (1)

with the Coulomb interaction kernel, vðr; r0Þ ¼ 1=jr� r0j,
and the Bjerrum length ‘B � e2=�kBT. The charge density
at position r is given byQðrÞ ¼ q�ðrÞ � �ðrÞ with �ðrÞ ¼
�½�ðzÞ þ �ðz�DÞ�. We consider the partition function in
the grand canonical ensemble, Q� ¼ P1

N¼0 �
NZN with

fugacity � and the canonical partition function ZN ,

Z N ¼YN
j¼1

Z
C

drj
N!

d�j

4�
exp

�
�ðH e��sÞþ

Z
drhðrÞ�ðrÞ

�
:

(2)

The integral should be done under the geometrical con-
straint C, i.e., z 2 ð0; DÞ. The second term �s in the
exponent is for subtracting all the self-energy terms con-
taining vðr; rÞ. The auxiliary field hðrÞ is introduced to
evaluate the mean number density. After a Hubbard-
Stratonovitch transformation followed by the Gaussian

integral over �ðrÞ, we are left with the partition Q� ¼
Zv

R
D�e�G½�� withZ�1

v ¼ det½vðr; r0Þ�1=2. The effective
action is given by
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G¼ 1

8��

Z
C
d~r

�
ð~r�Þ2�4�

Z
d ~�e��hð~rÞ��hð~rþ~dÞ

�
�Gb

(3)

where � is the coupling parameter, � ¼ 2�q3‘2B�, re-
scaled fugacity � ¼ �=2��2‘B, and �hðrÞ ¼ i�ðrÞ �
hðrÞ. Here, the solid angle ~� and ~r are rescaled variables,

respectively, as ~� ¼ �=4� and ~r ¼ r=� with the Gouy-
Chapmann length, � ¼ 1=2�‘Bq�. For simplicity of no-
tation, hereafter we shall drop the tilde on the scaled
length. The boundary contribution from the surface charge
reads Gb ¼ �ði=2��ÞR dr�ðrÞ�ðrÞ.

We evaluate the expectation value of the ion number
density given by h�ðrÞi ¼ � lnQ�=�hðrÞ�3jhðrÞ¼0, or

~�ðrÞ ¼ �ðrÞ
2�‘B�

2
¼ 2�

�Z
C
d�e�i�ðrÞ�i�ðrþdÞ

�
; (4)

where hXi ¼ R
D�Xe�G=Q�. An approximate evalu-

ation of Q� can be done either for � � 1 or for � �
1. Considering first the former case via the saddle point
approximation, we have lnQ� � �G½�PB� with �PB en-
suring �G=��ðrÞj�¼�PB

¼ 0, which leads to the extended

PB equation for dumbbell ions as

@2

@z2
i�PBðzÞ ¼ �4�

Z
C
d�e�i�PBðzÞ�i�PBðzþdzÞ: (5)

Accordingly, from Eq. (4), the PB density profile reads as

~� PBðzÞ ¼ �2�
Z
C
d�e�i�PBðzÞ�i�PBðzþdzÞ; (6)

where the fugacity � should be determined by requiring
the charge neutrality of the system,

R
dz~�PBðzÞ ¼ 2.

In the opposite strong-coupling limit, � � 1, the virial
expansion of the partition function as a power series in
�=� is efficient. Retaining terms up to linear order in the
expansion parameter, we write

Q�

Q�¼0

�1þ �

2��

�X
j

Z
C
drd�e��hðrÞ��hðrþdÞ

�
�¼0

(7)

which is further simplified by shifting the field as ~�ðrÞ¼
�ðrÞþ i�

R
dr0vðr;r0Þ½�ðr0 �rÞþ�ðr0 �r�dÞ�. It is then

straightforward to see that SC density profile is given by

~� SCðzÞ ¼ 2�
Z
C
d�e��=d; (8)

where the fugacity � is again determined by imposing the
charge neutrality. Counting the rotational restriction, for
example, when d < D< 2d, the SC density reduces to

~� SCðzÞ ¼ 2�ðz; dÞ=ðD� d=2Þ: (9)

Here, the solid angle function, �ðz; dÞ ¼ R
C d�=4�, de-

scribes the accessible volume fraction associated with rod
rotation: �ðz; dÞ ¼ ð1þ z=dÞ=2 for z 2 ð0; D� dÞ and
D=2d for z 2 ðD� d; dÞ. On the other hand, when D< d,

~� SCðzÞ ¼ 4�ðz; dÞðd=D2Þ ¼ 2=D; (10)

since �ðz; dÞ ¼ D=2d for z 2 ð0; DÞ.
In order to fill the gap between PB and SC theory, MC

simulations are conducted in the canonical ensemble.
Periodic boundary conditions are imposed on the lateral
directions in order to minimize the finite system size
effects. In Fig. 1, we show the ion density distribution
~�ðzÞ of small dumbbell ions (d ¼ 0:5) in the limit of
(a) PB and (b) SC regimes for different surface separations.
For both regimes, the MC results (symbols) show an ex-
cellent agreement with the theoretical predictions (solid
lines) obtained from Eqs. (6) and (8) [11]. It is notable that
the surface density is significantly reduced in comparison
with that of pointlike ions [for which PB solutions are
plotted as dotted lines in Fig. 1(a)]. This demonstrates a
natural tendency to lower the entropic cost of rotational
restriction close to the surface.
Using the relation P ¼ @ lnZN=A@D, we have con-

firmed that the contact value theorem is in general valid
for dumbbell-like ions: the interplate pressure P is given by
~P ¼ P=2�‘B�

2 ¼ ~�ð0Þ � 1. Figure 2(a) displays the
pressures for small dumbbell ions (open symbols) in com-
parison with those for pointlike ions (filled symbols) at
various coupling parameters. The lines represent the ana-
lytic predictions for PB (solid line) and SC (dashed line)
regime, well corresponding with the MC results. In the PB

FIG. 1. Counterion density profiles ~�ðzÞ for small dumbbell
ions with d ¼ 0:5 in the (a) PB limit [� ¼ 0:05] and (b) SC limit
[� ¼ 104]. The data points are MC results for various surface
separations. In (a), solid lines and dotted lines represent PB
predictions for dumbbell-like ions [Eq. (6)] and for pointlike
ions, respectively, whereas solid lines in (b) are SC predictions
[Eq. (8)].
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and SC limit, it is reasonable for vanishing d=D to expect
no significant difference between dumbbell-like and point-
like pictures except that � for rod ions is reduced as half
since q ! 2q. What then happens as d increases to a large
value? Figures 2(b) and 2(c) present the pressure and ion
density profile, respectively, for large dumbbell ions,
where the theoretical predictions again well agree with
the MC results. Surprisingly, Fig. 2(b) shows that as d
increases, dumbbell counterions begin to mediate an at-
traction even at the PB level (� ¼ 0:05). This surface

attraction, arising from dumbbell structure combined
with the electrostatic nature of the system, can be under-
stood by the energetic consideration as follows.
Suppose a test dumbbell lying across the midplane under

a symmetric electrostatic potential with negative curvature.
When d < D< 2d, two charges of a dumbbell cannot
reach both potential minima simultaneously. In this case,
one can easily see that the energy minimum is achieved by
the so-called bridging configuration where one end touches
a wall (z1 ¼ 0) and the other is perpendicularly oriented
towards the opposite surface (z2 ¼ d > D=2). The energy
difference between these bridging configurations for vary-
ing D is given by �E ¼ EðDþ �DÞ � EðDÞ with EðDÞ ¼
i�ðz1;DÞ þ i�ðz2;DÞ. It can be readily found that

@E=@D ¼ �i�0ð0Þð@�1=2=@DÞD> 0 since i�0ð0Þ ¼ 2

and @�1=2=@D< 0, clearly indicating the energetic driving
to smaller D. On the other hand, when D< d, two charges
in a dumbbell are free to reach both potential minima
independently of each other, and the dumbbell ions behave
exactly like 2N point charges, giving normal repulsive PB
behaviors [12]. When D> 2d, the rods cannot form the
bridging configuration; the surface touching rod cannot
cross the midplane, yielding the energetic repulsion again.
It is therefore conceivable that the attraction can occur only
for d < D< 2d if the bridging configurations prevail. In
order to have an attraction, the total energy gain, Eð2dÞ �
EðdÞ (which is shown to increase with d), should dominate
over the entropic contributions of the order of kBT, imply-
ing the existence of critical dumbbell size d� for attrac-
tions. Note this picture of the energetic bridging does not
hold for the SC regime where the electrostatic potential
appears to be flat. It is also important to appreciate that the
energetic bridging mechanism [13] is fundamentally dif-
ferent from the conventional entropic bridging attraction
observed for polyelectrolyte-macroions complexes [14]
where a chain connecting two surfaces experiences an
entropic-elastic force.
Finally, we obtain the phase diagram of intersurface

interactions as a function of D and d for various �.
Phase boundary data in Fig. 3 is determined from MC
simulations by the value of D at which interplate pressure
changes its sign. Regions bounded by curves thus represent
negative interplate pressure at corresponding �, explicitly
showing the existence of attraction for all coupling
strengths. Theoretic predictions denoted by dashed (SC)
and dotted (PB) lines quantitatively agree with MC results.
For small �, a finite dumbbell size (d > d� ¼ 4:2) is
required to form bound states. As consistent with the
aforementioned picture, the attraction indeed occurs in
the region of d < D< 2d for large d, leading to the equi-
librium plate separation (lower branch of curves) D� ¼ d.
In the limit of large �, according to Eqs. (9) and (10),
D� ¼ d=2þ 1 for D� > d and D� ¼ 2 for D� < d, sug-
gesting different roles of structural characteristics of rod.
When D< d, a dumbbell ion is viewed as structureless
point charges and the electrostatic correlation dominates,

(a)

(b)

(c)

~
~

~

~

FIG. 2. Pressure as a function of the plate separation D (a) for
small dumbbell ions of d ¼ 0:5 with various values of � and
(b) for large dumbbell ions at � ¼ 0:05 (open symbols) and at
� ¼ 104 (filled symbols). In (a) and (b), solid and dashed lines
denote PB [Eq. (6)] and SC [Eq. (8)] predictions for respective
dumbbell sizes. For comparison, pressures for the equivalent
system consisting of pointlike ions and having the same surface
charge are plotted together in (a): MC simulations (filled sym-
bols), PB (solid), and SC (dashed) solutions. (c) density profiles
for large dumbbells of d ¼ 6 at � ¼ 0:05 with ~�PB [Eq. (6):
line]. Inset shows the same at � ¼ 104 with ~�SC [Eq. (8): line].
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whereas for D> d, the depletion due to the rotational
entropic reduction [�ðz; dÞ in Eq. (9)] comes into play
along, giving the d-dependent D�.

Despite many studies devoted to polyelectrolyte-
macroion complexes [14], only recently have there been
theoretical studies to address the influence of chain stiff-
ness of charged polymers on surface interactions with
polyelectrolytes [15]. To some extent, short stiff polyelec-
trolytes bear a resemblance to multivalent dumbbell-like
ions. According to Turesson et al. [15], the equilibrium
surface separation is barely affected by the length of rigid
stiff chains, consistent with our finding for large � and d
[16]. However, this is not the whole story, but the important
factor determining phase behavior is the delicate competi-
tion among the entropic depletion, the electrostatic corre-
lation, and the energetic bridging. Our study shows that in
the weak coupling regime, the sufficient energy gain asso-
ciated with bridging configurations is required to have an
attraction, leading toD� � d only for d > d�. In the strong-
coupling regime, electrostatic correlation dominates, and
for small d < D�, depletion effect also plays a role. In the
intermediate regime which is probably the most important
for practical applications, the energetic bridging always
collaborates with the electrostatic correlation, giving rise
to the attractions for an arbitrary d andD� � d. Predictions
made in this study can be probed by means of x-ray
scattering or surface force apparatus experiments.
Extension of the present study to a system consisting of
charged multicylinders with dumbbell ions would be inter-
esting and will enable us to directly compare with experi-
ments on M14 virus [7].

On completing this work, we learned that May et al. [17]
considered a similar problem, symmetric electrolyte con-
taining rodlike ions, as an extension of [10]: They pre-
sented a variational theory in the PB limit where interionic
correlations are neglected, while our work is based on a

formal field theory, accompanied by systematic MC simu-
lations, to cover all coupling strengths.
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