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Filament-induced surface defect-mediated turbulence in bounded three-dimensional (3D) excitable

media is investigated in the regime of negative line tension. In this regime turbulence arises due to

unstable filaments associated with scroll waves and is purely a 3D phenomenon. It is shown that the

statistical properties of the turbulent defect dynamics can be used to distinguish surface defect-mediated

turbulence from its 2D analog. Mechanisms for the creation and annihilation of surface defects are

discussed and Markov rate equations are employed to model the results.
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Spiral wave patterns in two-dimensional excitable and
oscillatory media are organized around phase defects
where the local phase of the oscillation is not defined.
Turbulent states, where pairs of defects with opposite
topological charge annihilate in collisions and new pairs
of defects are continuously created, can exist in such
systems. This defect-mediated turbulence has been inves-
tigated both in simulation and experiment and is believed
to be important in processes such as cardiac fibrillation
[1,2], electroconvection in liquid crystals [3], fluid convec-
tion [4,5], autocatalytic chemical reactions [6,7], and
Langmuir circulation in the oceans [8].

While defect-mediated turbulence in 2Dmedia—includ-
ing the spiral breakup instabilities leading to it—is well
understood [9–15], much less is known about its analog in
3D media where another mechanism for wave turbulence
may operate: complex behavior in space and time can
emerge from the disorderly dynamics of vortex filaments
of scroll waves [16–20]. This purely 3D phenomenon
arises from the negative-tension instability of vortex fila-
ments, which causes filaments to stretch, bend, and loop.
The end points of filaments on the surface are topological
defects that exhibit dynamics (referred to here as surface
defect-mediated turbulence) which is similar in many re-
spects to 2D defect-mediated turbulence. Figure 1 shows
the structure of the spiral waves on one face of the cube,
which directly reflects the underlying scroll wave and
filament structure in the 3D medium.

The relevance of this 3D mechanism for ventricular
fibrillation is a matter of some controversy [1,17,21,22].
One reason for this is that usually only the surface of the
3D cardiac medium is accessible to experimental observa-
tion. In such experiments the full dynamics of the filaments
cannot be monitored. By contrast, most numerical studies
of excitable cardiac models have focused on the filament
dynamics (see, e.g., Refs. [23] and references therein).
These observations prompt the general question, is it pos-
sible to distinguish between the 3D mechanism for turbu-
lence and the 2D spiral breakup mechanisms in physical,

chemical, and biological systems if observations are con-
fined to the dynamics of spiral waves on the surface?
In this Letter, we determine the statistical properties of

turbulent states generated by the negative-tension instabil-
ity of vortex filaments in excitable media. We show that it
is sufficient to study the dynamics on the surface of the 3D
medium in order to distinguish the 2D and 3Dmechanisms.
This allows us to make predictions which can be experi-
mentally verified by observations of surface defect-
mediated turbulence in 3D excitable media.
We consider a cubical 3D excitable medium with sides

of length L and no-flux boundary conditions on its surface.
The kinetics is described by Barkley’s model [24]
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Here, uðr; tÞ and vðr; tÞ are the activator and the inhibitor
fields, respectively. The parameters were chosen to be � ¼
0:02, a ¼ 1:1, b ¼ 0:21, Du ¼ 1, and D� ¼ 0. The coor-
dinates of the filaments were determined from the inter-
sections of the two isosurfaces u0 ¼ 1

2 and v0 ¼ a=2� b

[25]. For these parameters the medium is weakly excitable
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FIG. 1 (color online). Snapshot of the v field in the turbulent
state on one of the surface sides of the cube. 11 spiral cores are
visible which are the end points of the filaments.
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and well within the regime of negative line tension.
Furthermore, under these conditions previous results
[19,20] and our simulations have shown that the system
is not turbulent in 2D and filaments rarely undergo frag-
mentation before they touch the boundaries [26]. This
allows us to study filament turbulence in a simple context.
The initial conditions were chosen to produce a scroll wave
that subtends the volume. The model was integrated [27]
for a sufficiently long time for a statistically stationary
state to be observed where the volume contains a fluctuat-
ing number of vortex filaments whose total length fluctu-
ates about a constant average value. Since the mechanisms
leading to 2D turbulence do not operate in the excitable
medium considered here, if the last filament is annihilated
in the course of the dynamics the system will relax to the
stable steady state and turbulence will be extinguished.
However, we have never observed an extinction of turbu-
lence on the long time scale of our simulations [28].

In 2D systems, the essential statistical features of defect-
mediated turbulence in both experiments and simulations
are captured by a simple Markov model which treats defect
pairs as statistically independent entities. Gil et al. [10]
assumed that defect pairs are created at a constant rate,
cðnÞ ¼ c, and annihilated at a rate proportional to the
square of the number of defect pairs, aðnÞ ¼ an2, since
defects can only annihilate in pairs of opposite topological
charge. In this stochastic model the stationary probability
distribution (PD) for the number of defect pairs is given by
pðnÞ ¼ ½cðn� 1Þ=aðnÞ�pðn� 1Þ whose solution is a
squared Poissonian distribution pðnÞ / ðc=aÞn=ðn!Þ2.
Modifications to the rates must be made when boundary
effects or noise have to be taken into account [5,7,29].

We adopt a similar approach to describe surface defect-
mediated turbulence. The essential ingredients of the
Markov model are the creation and annihilation rates.
The mechanisms that lead to the creation and annihilation
of surface defect pairs in the presence of the 3D negative-
tension instability are fundamentally different from those
in 2D. (1) Creation is due to filament collisions with the
boundary. Such collisions break filaments into two seg-

ments forming a new surface pair of defects with opposite
topological charge (see Fig. 2). If we assume the filaments
to be statistically independent and, thus, uniformly distrib-
uted in the volume, it directly follows that the creation rate
of surface defects should be proportional to the number of
filaments—which is the same as the number of defect pairs
for our model parameters—since the creation rate is de-
termined by the growth rate of the filaments. Thus, cðnÞ /
n. (2) The destruction of filaments and the accompanying
annihilation of defect pairs occurs when small filament
segments—generated in the creation process—shrink and
disappear as shown in Fig. 3. For small segments with high
curvature, the equations leading to the negative-tension
instability [16,30], which were derived under the assump-
tions of linelike filaments and small curvature, no longer
apply. In such cases filament segments can shrink instead
of grow as shown in Fig. 3. In this process, the surface
defects with opposite topological charge at the filament’s
end points collide and annihilate. While destruction
mechanisms involving defects associated with different
filaments are possible, these events do not play a detectable
role in our simulations. Consequently, only a linked pair of
defects can annihilate implying that the annihilation rate is
proportional to the number of defect pairs and aðnÞ / n.
This assumes statistically independent filaments.
The computed surface creation and annihilation rates as

a function of the number of defect pairs for different L are
presented in Fig. 4. For not too small L and n these rates
can be fit by the forms

cðnÞ ¼ �1 þ �2n; aðnÞ ¼ �1 þ �2n: (2)

Using these rates and solving for the stationary solution of
the Markov model, instead of the squared Poissonian dis-
tribution of 2D turbulence, we find

pðnÞ ¼ pðn0Þ z
n�n0�ðnþ z1Þ�ðn0 þ z2 þ 1Þ
�ðnþ z2 þ 1Þ�ðn0 þ z1Þ ; (3)

where z1 ¼ �1=�2, z2 ¼ �1=�2, z ¼ �2=�2, n0 2 N and
� the gamma function. This functional form is a direct
consequence of the forms of the rates given in Eq. (2) and

FIG. 2 (color online). Creation of a
new filament. Initially, three filaments
are present in the system. One of them
(see arrow) collides with the boundary
leading to the separation of the filament
into two. A new surface defect pair is
generated.

FIG. 3 (color online). Annihilation of
filaments. Initially, five filaments are
present. Two of them are short and
well separated from the others.
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n0 represents the lowest value for which the latter is
accurate. The predictions of Eq. (3) compare generally
well with the measured value of pðnÞ for large L as shown
in Fig. 5 [31]. The forms of the creation and annihilation
rates, as well as the form of the defect PD, are clearly
different from those for 2D defect-mediated turbulence,
even if boundary effects [5,7], noise [29], or strong corre-
lations between defects [7] are included. The forms of
these rates are the main signatures of filament-induced
surface defect-mediated turbulence.

To evaluate the assumption of statistically independent
filaments—which was necessary to predict linear creation
and annihilation rates—and its failure for small L, we
consider how the average surface density of defect pairs,
�d ¼ hni=ð6L2Þ, and the average volume per total filament
length hVfi ¼ L3=hLfi vary with L. Figure 6 shows that �d

decays as 1=L while hVfi grows as L. If filaments are

uniformly distributed in the volume, this implies that fila-
ments and associated defect pairs interact more strongly
for small L explaining the breakdown of the assumption of
statistically independent filaments.

However, correlations do exist even for large L: For very
large system sizes, for a different excitable medium, the
formation and persistence of intermittently stable triple
filaments strands in large systems was observed [32].
Three nearby filaments with similar orientation form a
triple-stranded bound state, effectively generating a
three-armed scroll wave. Such transient bound states are
also visible in Figs. 2 and 3 for our system. Since the
formation of triple strands is accompanied by an increase
in the excitation frequency, single filaments are pushed out
of the system enhancing the destruction rate. This contri-
bution to the annihilation rate should be independent of the
number of filaments present in the system implying a
positive constant term. Indeed, we find that the linear
dependence of aðnÞ breaks down for small n—independent
of L—giving rise to a significantly higher (positive) anni-
hilation rate (not shown). While the large statistical fluc-
tuations do not allow us to verify the existence of a constant
regime in aðnÞ, the observations are at least consistent.
Figure 7 gives further evidence for the effects of tran-

sient bound states. Since the formation of triple strands

FIG. 5 (color online). Normalized histogram of the number of
defect pairs for different L. The solid lines are the theoretical
prediction [Eq. (3)] using the rates determined in Fig. 4.

FIG. 6 (color online). Average surface density of defect pairs
(blue circles) and average volume per filament (red triangles) as
a function of system size. The lines correspond to a hyperbolic
and a linear fit, respectively.

FIG. 4 (color online). Creation and annihilation rates as a
function of the number of defect pairs for different L. Only
data points with statistical errors less than 12% are shown [33].
Lines correspond to fits to those points according to Eqs. (2). We
find �1 ¼ �0:037� 0:012, �2 ¼ 0:033� 0:001 for the creation
rates. For the annihilation rates, we find �1;L¼75 ¼ �0:26,
�2;L¼75 ¼ 0:053, �1;L¼100 ¼ �0:33, �2;L¼100 ¼ 0:054,
�1;L¼128 ¼ �0:42, �2;L¼128 ¼ 0:053. Note the deviations from

linear behavior for L ¼ 50 in both cases.
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pushes single filaments out of the system, it leads to a more
regular, laminar state until the bound state breaks up. In
Fig. 7, the turbulent dynamics shows incipient intermit-
tency for large L. Yet, there are no well-defined laminar
periods even for the largest L. This indicates that the life-
time of the bound states is rather short limiting the effect of
the correlations due to intermittency.

We have shown that the statistical properties of surface
defect-mediated turbulence allow us to distinguish be-
tween the mechanism for 3D filament-induced spiral tur-
bulence and 2D spiral breakup mechanisms. In particular,
for large systems, the appearance of the linear contribution
to the creation rate allows one to make a clear distinction
between the 2D and 3D mechanisms. Our results suggest
that a statistical description of surface defects in systems
with 3D spiral turbulence can provide useful insight into
the dynamics. Even for more complex models than that
considered here, such as those used in modeling cardiac
fibrillation and chemical dynamics, the general ideas that
underlie our statistical analysis of surface spiral turbulence
should prove useful for understanding the mechanisms that
control the turbulent behavior.
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