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Adyvillin Folding Takes Place on a Hypersurface of Small Dimensionality
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All-atom explicit-solvent molecular dynamics simulations have been used to investigate the topological
structure of the space explored during folding by the c-terminal fragment of the Advillin headpiece, a 36
amino-acid protein. A fractal dimension analysis shows that the hypersurface explored during the folding
process has an approximate dimensionality of only three. It is shown that this low dimensionality persists
well above the unfolding temperature and is not present in simple coarse-grained models.
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In 1969 Levinthal proposed, in his famous paradox, that
protein folding should take an exceedingly long time to
occur because of the astronomically large number of con-
formations that have to be explored during the folding
process [1]. Several theories have been put forward during
the years to solve this paradox. It has been proposed that
the folding process does not proceed as a random walk in
the space of conformations but is guided towards the native
state by a funnel-shaped free energy landscape [2,3] in
which transitions towards nativelike structures are margin-
ally but systematically favored. It has also been proposed
that the effective number of configurations that the system
has to explore before finding the native state is greatly
reduced by the constraints imposed by the intrinsic features
of polypeptide chains that, for instance, bend with a fixed
radius of curvature and form hydrogen-bonds with fixed
patterns [4,5]. The importance of constraints in determin-
ing the dynamics of proteins is confirmed by some recent
simulation results. It has been shown that two generalized
reaction coordinates are sufficient to capture the most
important features of the folding landscape of SH3 and
CV-N proteins described with a coarse-grained model [6].
Moreover, it was recently demonstrated by extensive
explicit-solvent simulations that the dynamics of poly-
Ala takes place on manifolds of reduced dimensionality
[7].

Here extensive atomistic molecular dynamics simula-
tions have been used to further investigate the topological
features of the configuration space that is explored by a
protein during the folding process. The analysis is per-
formed on the Advillin c-terminal headpiece (Advillin), a
36 amino-acid (AA) protein that folds to form a three helix
bundle [8]. The small size of the system allowed perform-
ing extensive simulations using an accurate but computa-
tionally expensive description that takes into account the
solvent molecules explicitly [9]. The simulation was per-
formed using bias exchange metadynamics [10] (BE) and
run for 640 ns on 8 replicas (details can be found in
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Ref. [11]). BE, by enforcing an extensive exploration of
the configuration space, allows predicting the folded state
of small proteins. A cluster analysis [10] performed on the
BE trajectory allows identifying hundreds of structures that
differ in secondary content, solvent accessible surface area,
number of internal hydrogen bonds, radius of gyration, etc.
For each of these structures the free energy was estimated
from the BE results [11]. The most ostable structure has a
root mean square deviation of 2.5 A with respect to the
experimental structure [8], showing that the simulation
predicts the correct fold [11].

The trajectory obtained from this simulation was used to
calculate the fractal dimension of the space of the confor-
mations explored during the folding process. To this aim,
the trajectory was projected in the space defined by the
seven collective variables that are used in the BE simula-
tion (other choices of variables will be considered below).
These variables are the number of backbone hydrogen
bonds, salt bridges and hydrophobic contacts, the number
of a/ B residues and the correlation between the backbone
dihedral angles [10,11]. The last two variables are esti-
mated separately for the first and the last 18 residues of the
protein. Each of the seven variables is defined as a con-
tinuous function of the coordinates [10,11] changes sig-
nificantly during the dynamics and does not show any
obvious correlation with the others: the plot of the trajec-
tory as a function of any pair of variables looks invariably
like a dense two-dimensional region, indicating that the
dimensionality of the configuration space explored during
folding is at least two. Among the several possible mea-
sures of the fractal dimension of a series of observables, the
correlation dimension [12] was chosen here, as it was
found to provide the best convergence with respect to the
number of data and was the easiest to compute for high-
dimensional spaces. Test calculations performed with the
box counting method gave similar results, but convergence
was not nearly as good. The correlation dimension is a
measure of how the number of neighbors of a point in-
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creases with distance [12]. Consider a hypersurface of
dimension d embedded in a higher dimensional space.
The number of points within distance » from a given data
point scales as ¢ where d is, by definition, the correlation
dimension. d can be estimated from the slope of the natural
logarithm of the number of neighbors N(r) versus the
natural logarithm of r. Such a plot is reported in Fig. 1
(green points). Two different correlation exponents can be
spotted, with a crossover at log(r) ~ —2.7. For log(r) <
—2.7, corresponding to small conformational changes, the
correlation dimension of the space is ~6, close to the
maximum possible value of 7. However, for larger confor-
mational changes the correlation dimension of the space
becomes as low as 3.02. The small size of Advillin (36 AA)
limits the size of the space where large conformational
changes can be observed. Still, the behavior of log(N(r)) is
compatible with a dimensionality of ~3 for more than
1 order of magnitude in the variation of r. Qualitatively,
the space of conformation of this protein can be described
as local regions of high-dimensional space embedded in a
low-dimensional superstructure. This means that, on aver-
age, each configuration can evolve in only three linearly
independent directions, and the number of pathways that
the system can follow is much reduced. This is consistent
with the results obtained studying the large-scale motion of
globular proteins by normal mode analysis [13] and with a
recent analysis performed on poly-Ala [7], SH3, and CV-N
proteins [6].

The robustness of this result was tested in several differ-
ent manners. First, the estimate was repeated eliminating
half of the data points, one out of every two. The new plot
(Fig. 1, blue) is indistinguishable from the calculation
based on the full set (Fig. 1, green), showing that the result
is well converged with respect to the number of data.
Second, the analysis was repeated on a completely inde-
pendent BE simulation, initiated from a different starting
structure. This second simulation also correctly predicts
that the most stable structure of the system is the native
fold. The correlation dimension that is obtained (red points
in Fig. 1) is essentially identical to the one obtained in the
first simulation. Finally, the correlation dimension was
computed on a 4 us normal (unbiased) molecular dynam-
ics trajectory of Villin at 340 K kindly provided by
Eastwood and Shaw. This trajectory starts from an ex-
tended state, explores a smaller portion of configuration
space than the BE trajectory, but finally visits the folded
state. The intrinsic dimension of the space sampled by this
simulation is 2.8, indicating that the low dimensionality is
not an artifact generated by the BE algorithm. This also
suggests that the effective dimensionality of the folding
space is determined by the gross features of the
Hamiltonian as a complete exploration of the configuration
space does not seem to be essential to estimate its value.
The correlation dimension was also computed separating
the trajectory in two parts, one including foldedlike struc-
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FIG. 1 (color). Plot of the logarithm of the number of neigh-
bors N as a function of the logarithm of the distance r. Since r
has to be defined in a space including variables with different
units of measure, before computing the distance each variable s
is divided by Spax — Smin, Where s, and s, are the maximum
and the minimum value of s explored during the dynamics. Data
are reported for simulation 1 (green), simulation 2 (red), half of
the data of simulation 2 (blue), simulation 2 in a 30-dimensional
representation based on the number of Ca contacts of residues
4-33 (black) and simulation 2 in a 15-dimensional space based
on the Ca-Ca distances (purple). The black line corresponds to
a correlation dimension of 3 and is plotted as a guide for the
eyes. For the sake of clarity, the curves obtained in the different
simulations are displaced by an arbitrary constant in y direction,
otherwise some of them would be indistinguishable.

tures at a RMSD from the folded state below 5 1&, the other
including all the rest. Once again, the correlation dimen-
sion in the two parts is indistinguishable, indicating that the
small value is not a specific feature of the folded minimum.

The results discussed so far were obtained computing
the correlation dimension on a trajectory embedded in a 7-
dimensional space defined by the variables used to perform
the BE simulation. One might wonder if the dimensionality
of ~3 that is found depends on this choice. It is obvious
that adding a coordinate that is irrelevant for the folding
(e.g., the rotation of a methyl group or the position of a
solvent molecule) has the effect of increasing the observed
dimensionality by one. However, the rotation of a methyl
group or the position of a water molecule are fast variables
that are explored very efficiently also in a short time. It can
be checked that as long as the correlation dimension is
computed in a space including only variables that describe
global structural rearrangements its value is approximately
3 irrespectively of the set of variables that is chosen. For
example, the trajectory was mapped in the 30-dimensional
space of the number of contacts n; that each Ca makes
with all the other Ca-s, for each residue starting from 4 up
to 33. n; is estimated as a continuous function of the
positions r; of the Ca-s as
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where r, = 6.5 A. The correlation dimension calculated in
this high-dimensional space is still 3.2 (Fig. 1, black), very
close to the result obtained in the 7-dimensional space.
Using the number of Ca contacts as collective variables
changes the position of the crossover between the high-
dimensional and low-dimensional region. However, this is
expected, as the position of the crossover is related to the
definition of distance, which has a different meaning in
each space.

In this respect it is instructive to compute the correlation
dimension in a space of variables including only distances,
as this allows providing a physical interpretation of the
crossover observed in Fig. 1. At this scope, the BE trajec-
tory was mapped in a 15 dimensional space defined by the
set of distances rij between pairs of Ca-s, with i = 5, 10,
15, 20, 25, 30, and j =i + 5, ..., 30. The distance in this
space between the two structures at time ¢ and ¢ is defined
as r = \/Zij(r,-j(t) — r,-j(t’))2 and is closely related to the
standard RMSD between the two structures. The correla-
tion dimension computed in this set of variables displays a
more complex behavior, but is still approximately 3 over a
wide range of distances (purple crosses in Fig. 1). The
crossover between the lower and higher dimensionality is
located at log(r/rm.) ~ —2.5, corresponding to r~
1.6 A. This suggests that local rearrangements can take
place, on average, in several independent directions. As
soon as the system moves significantly, say of more than
2 A in this space, it can move only in less independent
directions, approximately between 2.5 and 3.5. The cross-
overs that are observed at larger r are smeared out in the
space of the other collective variables used in Fig. 1 and
could be related to the relatively small length of the protein
that is considered here, 36 AA. The nature of these cross-
overs should be analyzed further computing the correlation
dimension on folding trajectories of larger proteins.

The temperature dependence of the correlation dimen-
sion was estimated by running 30 ns of parallel tempering
(PT) simulation on 32 replicas with temperatures ranging
between 298 and 480 K [14,15]. To speed up convergence,
the central structures of the most populated clusters found
in the BE trajectory [10,11] were chosen as initial configu-
rations. As shown in Fig. 2, between 298 and 320 K the
correlation dimension increases from ~2 to ~3 and then
remains constant up to 380 K, where it starts growing
again. Even above the unfolding temperature large portions
of the configuration space cannot be accessed and the
dimensionality remains rather small. Larger dimensional-
ities were observed in test simulations where all non-
bonded interactions and the dihedral terms involving the
C,-s were eliminated, suggesting that the low d is a con-
sequence of the energetic and geometric constraints im-
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FIG. 2 (color online). Temperature dependence of the correla-
tion dimension of the folding space. The correlation dimension
was estimated as in Fig. 1 for each replica of a parallel tempering
simulation. The dashed line indicates the melting temperature
(342 K).

posed by the polypeptide chain. However, the force field
used for all-atom explicit-solvent simulations have been
optimized to describe accurately the behavior of proteins at
room temperature, and the behavior of the model at higher
temperatures might be less realistic.

To investigate further the nature of the low dimension-
ality the folding of Advillin was also simulated with a
Go Hamiltonian [16]. This model, although simple, has
been successfully applied for studying the qualitative
features of the folding process [17,18]. For the present
analysis each residue is represented by a sphere centered
on the Ca carbon atom. The Ca-Cea interaction is modeled
with a 10-12 potential that for Ca-s closer than 0.65 nm
has a minimum of 1 kcalmol™! at the experimental dis-
tance and for more distant Ca-s is repulsive only.
Interaction up to the third nearest neighbor were ex-
cluded and a force constant of 2 kcalmol ! rad ™! and of
0.075 kcal mol ! rad ! was used for the angle terms and
for the dihedral terms, respectively. The correlation dimen-
sion is calculated in the 15-dimensional space defined by
the set of distances between pairs of Ca defined above for
the atomistic simulations. The simulation was performed at
a temperature where the protein is approximately 50%
folded. The analysis is performed on a trajectory contain-
ing hundreds of folding events. As shown in Fig. 3, the
dependence of log(N) on log(r) is qualitatively different
from the one observed in the all-atom simulations. In the
Go model a plateau with a dimensionality of 1.2 is ob-
served for a large range of distances, approximately up to
r=2A (Fig. 3, X crosses). For larger distances, the
dimensionality is significantly larger, of 10 or more. This
might lead to conclude that the short-distance correlation
dimension of the Go model is very small. Still, further
analysis shows that the situation is more complex. Indeed,
another major difference between all-atom and Go results
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FIG. 3. The logarithm of the number of neighbors N as a
function of the distance r in logarithmic scale for a Go model
simulations. r is computed in the 15-dimensional space based on
the Ca-Ca distances. The correlation dimension was calculated
at a temperature where the protein is approximately 50% folded
on a trajectory containing hundreds of folding events (X
crosses); same as above, but on a five-times shorter trajectory
(pluses); for a purely repulsive self-avoiding polymer (stars).
The curve computed with the same set of variables for the all-
atom simulation is reported in Fig. 1, purple.

is that the latter converge slowly with simulation times.
When the dimensionality analysis is performed on a five-
times shorter trajectory, still including several folding
events, the low dimensionality region extends toward
larger r (Fig. 3, plus). Moreover, if the attractive potential
in the Go Hamiltonian is turned off, the one-dimensional
region extends towards even larger r (Fig. 3, stars). This
corresponds to the correlation dimension curve of a self-
avoiding polymer. Also in this case, extending the simula-
tion time has the effect of slowly moving the crossover
between the low and the high-dimensional regions towards
smaller r. A plausible explanation of this behavior is that
the low dimensionality region observed at small distances
is a consequence of the high dimensionality at larger r, that
would disappear for infinite simulation time. The high
dimensionality observed at large distances in the Go model
makes it rather unlikely that the system explores several
times a configuration that is not the folded state, extremely
unlikely if the attractive part of the potential is zero and all
the “unfolded” configurations are explored, on average,
only once. In other words, trajectory recrossings in the Go
model simulations are rare and the hypersurface explored
during the dynamics in the neighborhood of each configu-
ration coincides with the trajectory itself, whose correla-
tion dimension is, by definition, one. Such a behavior is not
observed in all-atom simulations, in which trajectory re-
crossings are common and only a few folding event are
sufficient to converge the results. This suggests that the
available space of conformations is in this case intrinsically

smaller, and all the relevant conformations are explored a
number of times that allow evaluating reliably the correla-
tion dimension at all values of r. It is concluded that the
correlation dimension of 3 derives from some nontrivial
features of polypeptide chains similar to the ones observed
for poly-Ala [7]. These are not captured by a the Go
Hamiltonian, that is designed to describe the gross features
of the folding process and not to describe the atomistic
details of the system.
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