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We propose a derivation of the full counting statistics of electronic current based on a positive-operator-

valued measure. Our approach justifies the Levitov-Lesovik formula in the long-time limit, but can be

generalized to the detection of finite-frequency noise correlations. The combined action of the projection

postulate and the quantum formula for current noise at high frequencies imply an additional white noise.

Estimates for this additional noise are in accordance with known experiments. We propose an experi-

mental test of our conjecture by a simultaneous measurement of high- and low-frequency noise.
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The core of quantum measurement theory is the projec-
tion postulate [1]. It provides a consistent description of a
sequence of measurements. Quantities represented by non-
commuting operators cannot be measured simultaneously.
The corresponding projection operators have to be time
ordered. For continuous variables, the projection postulate
should be replaced by a positive-operator-valued measure
(POVM) [2]. The idea of the POVM is that one does not
measure the exact value for a given operator but a finite
accuracy is taken into account due to some interaction with
the detector and its internal dynamics. However, due to
Naimark’s theorem [3], every POVM can be realized by a
set of orthogonal projections in an extended Hilbert space.
The resulting POVM will depend on the detection scheme.

The statistical behavior of current flow in a quantum
electronic contact—e.g., a narrow constriction in a two-
dimensional electron gas—can be found by measurement
of the correlation functions. The long-time cumulants of
the transferred charge can be derived from the Levitov-
Lesovik formula [4], which led to the foundation of the
electronic version of full counting statistics (FCS) [5–7]. It
has been confirmed experimentally for noise [8] and third
cumulant [9–11]. On the other hand, the current-current
correlation function (noise spectral density) is given by the
quantum noise [12,13], which coincides with the FCS
result at low frequencies. The high-frequency quantum
noise can be obtained by a generalization of FCS to finite
frequencies with additional predictions for higher cumu-
lants at arbitrary frequency [14,15]. Also, the semiclassical
predictions of the third cumulant are consistent with purely
quantum results in some limits [16]. The behavior of
quantum noise has been confirmed experimentally also
for high frequencies [17–19]. From the fundamental point
of view, the low-frequency results can be justified by a
proper use of the projection postulate, but there is no
unique derivation for high frequencies [20]. A similar
problem occurs for a chain of spin-resolved detectors, for
which the results depend on the detector properties [21].
While it is reasonable to expect an influence of the detector

on the outcome [7,21,22], it should be possible to separate
it from the bare signals of the sample.
In this Letter, we address the question, if a general defi-

nition of FCS for finite frequencies is possible—maintain-
ing the probabilistic interpretation. We will demonstrate
that the standard definition of FCS, when generalized to
finite frequency, can lead to negative probabilities. To cure
this deficiency, we show that taking into account a minimal
model of a detector, a POVM of FCS can be introduced,
which leads to positive definite probabilities.
The definition of the generating functional for a proba-

bility distribution % of a given time trace of the current
through a quantum point contact, IðtÞ, is

eS½�� ¼ he
R

i�ðtÞIðtÞdt=ei% ¼
Z

DI%½I�e
R

i�ðtÞIðtÞdt=e: (1)

On the other hand, one can first define FCS generating
function [4,6,7,14]

eS½�;�� ¼ Tr�̂ ~T e
R
ðidt=2eÞ½�ðtÞþ2�ðtÞ�ÎðtÞ

�T e
R
ðidt=2eÞ½�ðtÞ�2�ðtÞ�ÎðtÞ: (2)

Here, �̂ denotes initial state density matrix, ÎðtÞ is the
Heisenberg current operator, � refers to classical phase

bias, and T ð ~T Þ denotes (anti-) time ordering. A detailed

definition of ÎðtÞ will be given later.
Taking S½�� ¼ S½�; 0�, we obtain % by inverse Fourier

transform of (1). However, this gives positive probabilities
only in the zero-frequency limit. For time-dependent quan-
tities, we can construct the following counterexample for a
single-mode point contact at zero temperature in the tun-
neling limit (transmission T � 1). Let us define

X ¼
Z t0

0
dtdt0IðtÞIðt0Þ½e�ðt�t0Þ2=s2 � 2e�ðt�t0Þ2=9s2�: (3)

Then, following [14], we find hð�XÞ2i% ¼ �Tt0e
4=3s�3=2

for �X ¼ X � hXi% and t0 � s. This obviously contradicts

the interpretation of % as probability.
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To overcome this fundamental problem, we now con-
struct a positive definite probability of time-dependent
FCS based on a POVM. Instead of the projection operator,
we define the more general Kraus operator [23]

K̂½I� ¼
Z

D’T e
R

dt½i’ðtÞ½ÎðtÞ�IðtÞ�=e�’2ðtÞ=��: (4)

Causality is preserved since the detector affects the mea-
surement only in later times. The time scale � describes
internal fluctuations of the detector and depends on its
temperature in general. For � ! 1, the measurement is
accurate, but the detector noise strongly affects the system
by full projection. A shorter � reduces the influence of
detector but induces a larger measurement error. The in-
tegration measure contains also a normalization factor to
be determined later. The positive definite probability of a
given IðtÞ is defined as

�½I� ¼ Tr�̂K̂y½I�K̂½I�; (5)

for the given initial density matrix �̂. We note that our
choice of the Kraus operator represents generically the
influence of a detector, parametrized by a single parameter
�. What concrete models of detectors lead to our definition
of the Kraus operator is an interesting question, which we
will not address here.

We now substitute in Eq. (5) ’ ! �� �=2 in K̂ and

K̂y, respectively. The generating functional S½�� ¼
lnhexp½iR dt�ðtÞIðtÞ=e�i� necessary for the calculation cu-

mulants takes the form

S ½�� ¼ ln
Z

D�eS½�;���
R

dt½2�2ðtÞþ�2ðtÞ=2�=�; (6)

where S½�;�� is defined by (2). The measureD� is scaled
to keep S½� � 0� ¼ 0. The measuring device affects the
generating function by the additional exponent in (6). In

[21], Di Lorenzo and Nazarov used the expression �2 _�2 þ
�2=ð��Þ2 instead of �2, with �� as an additional pa-
rameter, and considered low-frequency measurements. In
contrast, we rather assume a continuous weak measure-
ment of the system to obtain finite-frequency correlations.

To further model our measuring device, we note that in
general a current measurement has also a spatial sensitiv-
ity, i.e., the point of the measurement is not exact. In
experiments, it can be usually related to the finite capaci-
tance of the sample. Therefore, we assume a generic form
of the current operator in a quasi-one-dimensional lead as

ÎðtÞ ¼
Z dxffiffiffiffiffiffiffi

2�
p

�x
Îðx; tÞe�ðx�x0Þ2=2�x2 : (7)

The setup is shown in Fig. 1(a). The real dispersion may be
non-Gaussian. However, we stress that our model is gen-
eral enough to capture the essential physics, but still allows
some analytical progress.

We will assume noninteracting electrons and energy-
and spin-independent transmission through the M mode
junction. We count all modes, although most of them are

just reflected and denote the Fermi velocity, the transmis-
sion, and the reflection coefficients for mode n by vn, Tn,
and Rn ¼ 1� Tn, respectively. For convenience, we intro-
duce tn ¼ jx0j=vn and �n ¼ �x=vn. The times �n are
related to RC times of the circuit, which limits the observ-
able frequencies to! & ��1

n . Furthermore, we assume that
t�1
n � ��1

n , which means that the detector sensitivity func-
tion is entirely located on one side of the junction.
To model the electron transport, we apply the standard

scattering picture around the Fermi level [12]. The Hamil-

tonian can be approximated by Ĥ ¼ P
�n

R
dxĤ �nðxÞ,

where

Ĥ �n ¼ i@vn½ĉ y
L �nðxÞ@x ĉ L �nðxÞ � ĉ y

R �nðxÞ@x ĉ R �nðxÞ�
þ qn�ðxÞ½ĉ y

L �nðxÞĉ R �nðxÞ þ ĉ y
R �nðxÞĉ L �nðxÞ�

� eV�ðxÞ½ĉ y
L �nðxÞĉ L �nðxÞ þ ĉ y

R �nðxÞĉ R �nðxÞ�: (8)

The scattering states obey standard fermionic anticommu-

tation relations fĉ y
A �nðxÞ; ĉ B �mðyÞg ¼ �AB� �n �m�ðx� yÞ and

fĉ A �nðxÞ; ĉ B �mðyÞg ¼ 0. Here, A ¼ L, R denote left and
right going state, �n ¼ ðn;�Þ denotes mode number n and
spin orientation �. The transmission coefficient is given by
Tn ¼ cosh�2ðqn=@vnÞ. The current operator is defined as

ÎðxÞ ¼ P
�nevn ĉ

y
L �nðxÞĉ L �nðxÞ � L $ R. The initial density

matrix for a thermal state is �̂ ¼ e�Ĥ=kBT=Tre�Ĥ=kBT , and
the time evolution is governed by the Heisenberg operator

Îðx; tÞ ¼ eiĤt=@ÎðxÞe�iĤt=@.
For our model, the mean current is independent of the

detector, hIðtÞi� ¼ GV, where the conductance G ¼P
nTnGQ and GQ ¼ e2=�@. We define the noise spec-

tral density as a second cumulant e2Pð!Þ ¼R
dtei!th�Ið0Þ�IðtÞi�, where �IðtÞ ¼ IðtÞ � hIðtÞi�. It is

calculated from the functional derivative

h�Ið0Þ�IðtÞi� ¼ �e2
�2S½��

��ðtÞ��ð0Þ
����������0

; (9)
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FIG. 1. (a) Sensitivity of current measurement. The Gaussian
distribution refers to the dispersion of current measurement.
(b) The function qðzÞ.
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where S½�� is defined by Eq. (6). In our construction, the
noise is a classical quantity and, hence, symmetric with
respect to!. We consider frequencies j!�nj � 1 since we
do not include capacitive effects and obtain

Pð!Þ ¼ Poff þ PSð!Þ þ P0ð!Þ þ P�ð!Þ þ P�ð!Þ: (10)

Let us discuss the behavior of all terms of this expression.
The first one, Poff ¼ 1=� is a white offset noise, indepen-
dent of temperature and voltage bias. Defining wð!Þ ¼
!cthð@!=2kBTÞ and w�ð!Þ ¼ wð!� eV=@Þ, the second
term

PSð!Þ ¼ 1

2�

X
n

Tnf2Tnwð!Þ þ Rn½wþð!Þ þ w�ð!Þ�g

(11)

is just the symmetrized quantum noiseR
dt cosð!tÞTr�̂�Îð0Þ�ÎðtÞ=e2 [12]. However, for energy

independent transmission, as we assume here, the asym-
metric noise contains only the additional term

P
nTn!=�,

which is independent of temperature and voltage. The next
term is P0ð!Þ ¼ P

n2Rnsin
2ð!tnÞwð!Þ=�. This is a con-

tribution to the quantum noise due to the finite flight time to
the detector, as it depends on tn. Note that it is independent
of voltage and sensitivity. The problem of flight time has
been already discussed in context of third cumulant
[10,24], but there is no experimental evidence of its influ-
ence on the noise. The detection noise

P�ð!Þ ¼ �

4�2

��������
X
n

�
!ð1þ Rne

2i!tnÞ þ iffiffiffiffi
�

p
�n

���������
2

(12)

combines the effects of the measurement sensitivity � and
flight times tn but is independent of voltage and tempera-
ture. Finally,

P�ð!Þ ¼
Z d	

ð2�Þ2
X
n

fnð!� 	ÞRnTn½wþð	Þ þ w�ð	Þ�

(13)

is an additional mixed noise. Here, the sensitivity ampli-
tude is given by

fnð	Þ ¼
Z

dt

�
exp

�
� 1� e�t2=4�2n

8
ffiffiffiffi
�

p
�n=�

�
� 1

�
ei	t: (14)

It is independent of the flight times, but all other parame-
ters enter in a rather complicated way. Equation (13) is the
only term depending on �n in the limit j!�nj � 1
However, voltage and temperature are arbitrary. For � �
�n, the amplitude reduces to fnð	Þ ¼ �½e�	2�2n � �ð	Þ�ffiffiffiffi
�

p
=�n�=4.
We assume that most modes are closed,

P
nTn � M,

which is true in many experimental setups (e.g., tunnel
barrier, diffusive wire, quantum point contact). We will
consider several interesting limits: short and long wire

(flight time), low and high frequencies, and zero tempera-
ture. They correspond to the most common experimental
setups. For short flight times, j!tnj � 1, we have P0 ¼
2!2wð!ÞPnt

2
n. For long flight times, j!tnj � 1, we get

P0 ¼ Mwð!Þ=� because random flight times imply
sin2ð!tnÞ ! 1=2. In both cases, P� ¼ ðPn�

�1
n Þ2�=4�3 is

independent of voltage and yields additional offset noise.
For low frequency and a slow detector, @j!j �
ð@=�; @=�nÞ � eV, kBT the mixed noise is negligible since
P� � PSð0Þ. However, for kBT � @j!j � @=�n � @=�,
we have P� ¼ ð�=8�2ÞPnRnTnqð�njeVj=@Þ=�2n, where

qðzÞ ¼ e�z2 � 2z
R1
z e�t2dt. The decay of qðzÞ is shown

in Fig. 1(b). It vanishes for eV � @=�n, which means that
the size of the wave packet becomes smaller than the
spatial sensitivity of the detector.
From the above results, we conclude that the POVM

reproduces the standard quantum result in the case j!j �
ð1=�n; 1=tnÞ � 1=� � eV=@, kBT=@. It can be shown that
corrections to higher zero-frequency cumulants are negli-
gible in this case because P� is small. Hence, the Levitov-
Lesovik formula and FCS [4–7] are justified, as expected.
The situation becomes more interesting, if we look at the

high-frequency quantum noise. We can make P� and P�

negligible by choosing a very small �, which corresponds
to a weak detection. For small tn, also P0 gives only a small
contribution. Moreover, higher cumulants then have also
negligible corrections to predictions of generalized FCS as
small � corresponds to � ! 0 in Eq. (2). What remains is
the large white Gaussian offset noise Poff—the price we
have to pay for small �. Conversely, lowering Poff will
increase P�, which additionally depends on voltage. They
become of the same order at �� �n, and P� is growing asffiffiffiffiffiffiffiffiffiffi
�=�n

p
for � � �n. Hence, one cannot get rid of the addi-

tional noise by increasing � since it increases the back-
action noise.
The offset noise for a few mode quantum point contact

in most high-frequency experiments [17,18] was usually
subtracted. However, the results of the recent experiments
[18,19] show relatively high absolute noise temperature
T	 ¼ GQPh=4GkB, setting an upper bound to the offset

noise. We find T	 ¼ Toff þ T� with Toff ¼ 24 K and T� ¼
1:5 mK for a single-mode quantum point contact with
transmission 1=2, � ¼ 1 ps, and �1 ¼ 10 ps. Although
Toff is larger, it is constant whereas T� depends on voltage
bias and drops to zero according to the function qðzÞ. For
zero temperature, this yields a characteristic voltage of
130 
V at z ¼ 1. Diffusive and tunnel barriers have usu-
ally a higher conductance due to the large number of
modes, and hence the offset temperature can be much
lower. On the other hand, in a Josephson junction or a
quantum dot as a detector, the measured quantity is more
qualitatively than quantitatively related to the frequency
dependent quantum noise [25].
Moreover, as the offset noise is white, it must be visible

also at low frequencies. It would be therefore of great
interest to test high- and low-frequency noise simulta-
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neously. The high-frequency detector measures only the

difference PðeVÞ � Pð0Þ whereas at low frequencies the
absolute noise is measured. The fluctuation-dissipation
theorem [26] will of course be maintained after subtraction
of the offset noise and then taking the limit � ! 0.

We generalize our approach to a multiterminal measure-
ment. We define the Kraus operator (4) as

K̂½I� ¼
Z

D�T e

R
dt
P
A

fi�AðtÞ½ÎAðtÞ�IAðtÞ�=e��2
AðtÞ=�Ag

(15)

where A labels the terminals. A simple example is the noise
between the left and right sides of a junction, namely
e2PABð!Þ ¼ R

dtei!th�IAð0Þ�IBðtÞi where A, B ¼ L, R
for left and right terminals (or equivalently x0 < 0 and
x0 > 0), respectively. The cross correlation PLRð!Þ is finite
only for j!tnj � 1 since otherwise one averages over
different tn. In this limit, we have

PLL ¼ PLoff þ PS þ P�L þ P�L þ P�R;

PRR ¼ PRoff þ PS þ P�R þ P�L þ P�R;

PLR ¼ PRL ¼ �PS þ Px � P�L � P�R;

(16)

where Pxð!Þ ¼ !2ð�L þ �RÞM
P

nTn=4�
2. Here, PoffA ¼

��1
A , P�A , and P�A are given by Eqs. (12) and (13) with �

and �n replaced by �A and �nA. P� is here replaced by the

sum of contributions of both detectors. The cross noise
does not contain the offset noise, so it can help to estimate
the measurement time scales, in particular P�L þ P�R at
low frequency.

Finally, we propose the following test of our definition
of a quantum probability. Consider two detectors, similar
to [10], measure XL and XR defined by (3) for I ¼ IL and
IR, respectively. The classical expectation XL ¼cl XR

based on charge conservation in the low-frequency limit,

leads to h�XL�XRicl > 0. The quantum measurement

using the probability density �½I�, results for � � s in

h�XL�XRi� ¼ hð�XÞ2i%. This is, however, negative as we

have shown in beginning.
In conclusion, we have constructed a positive probabil-

ity measure, based on POVM, that justifies the use of
Levitov-Lesovik formula and FCS in long-time (low-
frequency) limit. Our approach cures certain deficits in
the standard definition of FCS, which lead to negative
probabilities. Introducing a generic one-parameter model
of the influence of the detector, we predict an intrinsic
additional white offset noise. Such a noise is in agreement
with recent experiments, and a further verification by
simultaneous low- and high-frequency noise measure-
ments would be desirable.
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