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We study the pairing symmetry of a two-orbital J1-J2 model for FeAs layers in oxypnictides. We show

that the mixture of an intraorbital unconventional sx2y2 � cosðkxÞ cosðkyÞ pairing symmetry, which

changes sign between the electron and hole Fermi surfaces, and a very small dx2�y2 � cosðkxÞ �
cosðkyÞ component is favored in a large part of the J1-J2 phase diagram. A pure sx2y2 pairing state is

favored for J2 > J1. The signs of the dx2�y2 order parameters in the two different orbitals are opposite.

While a small dxy � sinðkxÞ sinðkyÞ interorbital pairing coexists in the above phases, the intraorbital dxy
pairing is not favored even for large J2.
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High temperature superconductivity (at 56 K) has been
recently reported in the rare-earth electron- and hole-doped
oxypnictide compounds [1–6]. Preliminary evidence [7–9]
suggests that the superconducting state in the electron-
doped oxypnictides, like that in the cuprates, has gapless
nodal quasiparticles and an unconventional pairing sym-
metry. A number of theoretical studies have predicted or
conjectured different possible pairing symmetries, any-
where from p wave to a �-shifted s wave [10].

The electronic properties of oxypnictides differ from
those in cuprates in several important ways. Most impor-
tantly, the undoped oxypnictides are metallic but their
resistivity is strikingly high. They can hence be interpreted
both as a bad metal or as a poor insulator, leaving open the
question of whether a weak or strong coupling fixed point
governs their physics. From the band structure point of
view, barring the existence of unphysically strong crystal
fields, it seems likely that all 3d orbitals of the Fe atoms
are involved in the low energy electronic properties.
Numerical results based on first principle calculations
show the presence of small Fermi surfaces [11]. In the
unfolded Brillouin zone consisting of one Fe per unit cell,
electron and hole pockets exist around the M and � (�, �)
points, respectively. The magnetic properties of the oxy-
pnictides are also different from those of the cuprates.
Neutron experiments have shown that the magnetic struc-
ture in undoped oxypnictides is not a simple antiferromag-
netic order [12] but rather a stripe spin-density wave with
onset temperature of about 150 K.

The metallic behavior and the existence of Fermi pock-
ets have led to proposals about the superconducting mecha-
nism which originate in the weak coupling, itinerant limit
[13,14]. However, numerical and analytic research sug-
gests that the antiferromagnetic exchange coupling be-
tween Fe sites is strong [15–17]. Because of As-mediated
hopping, antiferromagnetic exchange exists not only be-
tween the nearest-neighbor (NN) Fe sites but also between
next-nearest-neighbor (NNN) sites. The NNN coupling
strength J2 is comparable to the NN coupling strength J1.

The J1-J2 model provides for half-filled magnetic physics
consistent with experimental neutron data [12]. A nematic
magnetic phase transition has been predicted in this model
[18,19], consistent with the experimental observation of a
structural transition preceding the spin-density wave for-
mation. Therefore, the magnetic structure of the undoped
oxypnictides is consistent with strong-correlation physics.
In the present Letter we obtain the superconducting

mean-field phase diagram of a t-J1-J2 model with the
correct Fermi surface for the oxypnictide compounds. We
consider only time-reversal symmetric superconducting
order parameters, and predict that two kinds of intraorbital
pairing order parameters, an extended s wave of the un-
conventional form sx2y2 � coskx cosky or a dx2�y2 �
coskx � cosky wave order parameter are the only possibil-

ities in the Mott limit. For the experimentally relevant
situation J2 > J1, we predict an sx2y2 � coskx cosky order

parameter which changes sign between the electron and
hole Fermi surfaces. A mixture of the intraorbital uncon-
ventional sx2y2 pairing symmetry and a small component of

dx2�y2 pairing symmetry is favored for J1 � J2 (Fig. 1).

While a small dxy � sinðkxÞ sinðkyÞ interorbital pairing or-

der coexists in the above phase, the intraorbital dxy pairing

symmetry is not favored even for large values of J2 in
contradiction with the predictions of several papers
[17,19,20] that rest on an analogy with the physics in
cuprates. While dxy pairing would indeed be favored for

J2 � J1 in the case of a large, single band, Fermi surface
(as in the cuprates) [21], if the oxypnictide local-density
approximation Fermi surface picture is correct, we can
argue, on general grounds, that dxy pairing cannot compete

with the extended s wave we propose even if J2 is very
large. If we consider a single band and treat a NNN J2 in
mean-field decoupling, the superconducting transition
temperature Tc is self-consistently determined by an
Eliashberg equation 2Tc ¼ J2

P
k½fðkÞ�2gðxðk; TcÞÞ where

fðkÞ is the pairing symmetry factor and gðxÞ ¼ tanhðxÞ
x [with

xðk; TcÞ ¼ �ðkÞ��
2Tc

] positive and peaked at the different
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Fermi surfaces. Hence Tc follows the maximum value of
the pairing symmetry factor jfðkÞj close to the Fermi
surfaces. The dxy pairing symmetry factor, sinkx sinky, is

always small at the electron [(0, �), (�, 0)] and hole
pockets [(0, 0), (�, �),] in the unfolded Brillouin zone of
oxypnictides. Hence dxy pairing symmetry is not favored

even for large J2.
The model.—We focus on a two-orbital per site model of

the oxypnictides, with hybridization between the dxz and
dyz orbitals. Although this description is only valid in the

case of unphysically large crystal field splitting, we par-
ticularize to this model for analytic simplicity. We

adopt the band structure proposed in Ref. [14], H0 ¼P
k�c

y
k�TðkÞc k�,

TðkÞ ¼
�
�xðkÞ �� �xyðkÞ
�xyðkÞ �yðkÞ ��

�
(1)

where c y
k;� ¼ ðcydxz;k;�; cydyz;k;�Þ is the creation operator for

spin � electrons in the two orbitals and

�xðkx; kyÞ ¼ �2t1 coskx � 2t2 cosky � 4t3 coskx cosky;

�yðkx; kyÞ ¼ �xðky; kxÞ; �xyðkÞ ¼ �4t4 sinkx sinky:

(2)

The hoppings have the magnitudes: t1 ¼ �1:0, t2 ¼ 1:3,
t3 ¼ �0:85, t4 ¼ �0:85 (the energy unit of parameters in
this Letter will be set by jt1j). The half-filled, two electrons
per site configuration requires � ¼ 1:54. The interaction
Hamiltonian contains three terms: the first two are anti-
ferromagnetic NN and NNN couplings between the spin of
identical and opposite orbitals:

Hi¼
X
r��

Ji��½ ~Sðr;�Þ � ~Sðrþ�i;�Þ�nðr;�Þnðrþ�i;�Þ�

where ~Sðr; �Þ ¼ cy�;r;� ~���0c�;r;�0 is the local spin operator,

nðr; �Þ is the local density operator, �, � are orbital index,
i ¼ 1, 2, �1 is the nearest neighbor and �2 is the next-
nearest neighbor. The third is a Hund’s rule coupling of

the spins on different orbitals, on the same site: H3 ¼
�P

r�JH ~Sðr; �Þ ~Sðr; ��Þ, where �� is the orbital complemen-
tary to �. The antiferromagnetic J1 and J2 (both positive)
are usually obtained from numerical calculations involving
overlap with Fe-As-Fe orbitals. Our mean-field solutions
should be interpreted in the same spirit as the supercon-
ducting solutions of the original t-J model: at some value
of the doping, the true undoped spin-density wave ground-
state disappears and gives way to a superconducting state
[22].
Keeping all of the above terms becomes analytically

intractable. We proceed with a two-step process: we first
mean-field decouple the interaction Hamiltonian assuming
that exchange takes place only between spins on the same
orbitals. While physically incomplete, this model is ana-
lytically tractable, and exposes the uncompetitiveness of
dxy order. We then numerically solve the full model. The

interaction term reads
P

k;k0Vk;k0c
y
�;k;"c

y
�;�k;#c�;�k0;#c�;k0;"

with Vk;k0 ¼ � 2J1
N

P
�ðcoskx � coskyÞðcosk0x � cosk0yÞ �

8J2
N ðcoskx cosky cosk0x cosk0y þ sinkx sinky sink

0
x sink

0
yÞ with

obvious pairing amplitudes in four channels x2 � y2, xy,
and x2y2, ��ðkÞ ¼ �x2þy2;�ðkÞ þ�x2�y2;�ðkÞ þ
�x2y2;�ðkÞ þ�xy;�ðkÞ, and

�x2�y2;�ðkÞ
coskx � cosky

¼ � 2J1
N

X
k0
ðcosk0x � cosk0yÞdðk0Þ;

�a;�ðkÞ
faðkÞ ¼ � 8J2

N

X
k0
½faðk0Þ�dðk0Þ

(3)

where a ¼ x2y2, xy, faðkÞ are corresponding symmetry
factors and dðk0Þ ¼ hc�;�k0;#c�;k0;"i. We use � ¼ f1; 2g to

represent the orbital index (xz, yz).
We decouple the interaction Hamiltonian with exchange

terms only between spins on the same orbitals in mean-
field: Hm ¼ P

k�ðkÞyAðkÞ�ðkÞ with

AðkÞ¼
�xðkÞ�� �1ðkÞ �xyðkÞ 0
��

1ðkÞ ��xðkÞþ� 0 ��xyðkÞ
�xyðkÞ 0 �yðkÞ�� �2ðkÞ
0 ��xyðkÞ ��

2ðkÞ ��yðkÞþ�

0
BBB@

1
CCCA

(4)

with �ðkÞ ¼ ðc1;k;"; cy1;�k;#; c2;k;"; c
y
2;�k;#Þ. The particulariza-

tion to oxypnictides is present in the hopping terms, which
couple different orbitals as in Eq. (2). AðkÞ can be diago-
nalized by an unitary transformation, UðkÞyAðkÞUðkÞ, and
the Bogoliubov quasiparticle eigenvalues E1 ¼ �E2 and
E3 ¼ �E4 are given by

Em¼1;3ðkÞ ¼ 1ffiffiffi
2

p

ð~�2x þ ~�2y þ 2�2xy þ �2

1 þ�2
2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~�2x � ~�2y þ �2

1 � �2
2Þ2 þ 4�2xy½ð~�x þ ~�yÞ2 þ ð�1 � �2Þ2�

qr
(5)

FIG. 1. The superconducting phase diagram in the J1-J2 plane
at 18% electron doping obtained by solving the self-consistent
Eqs. (3).
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where ~�x;y ¼ �x;y ��. The self-consistent gap and density
equations are

�1;2ðkÞ ¼
X
k0;m

Vk;k0U
�
2;4mðk0ÞU1;3mðk0ÞF½Emðk0Þ�; (6)

nð1;2Þ ¼ 2
X
k0;m

U�
ð1;3Þmðk0ÞUð1;3Þmðk0ÞF½Emðk0Þ� (7)

where FðEÞ is the Fermi-Dirac distribution function,
FðEÞ ¼ 1

1þeE=kT
. To obtain the transition temperature, we

linearize the self-consistent equation for small �1, �2.
After tedious algebra, we find the self-consistent equations
around Tc:

�2ðkÞ ¼
X
k0
Vk;k0 ½W3ðk0Þ �W1ðk0Þ� (8)

where

Wi ¼
½ð�x ��Þ2 � ~E2

i ��2 þ �2xy�1

2j�x þ �y � 2�j ~Ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2xy þ ð�x � �yÞ2

q tanhð� ~Ei=2Þ

(9)

with ~Ei ¼ Eið�1 ¼ �2 ¼ 0Þ.
The above equations can be solved numerically, varying

the doping � and the value of J1 and J2. In Fig. 1, we plot
the phase diagram in the J1-J2 plane with 18% electron
doping. The phase on the left upper corner where J2 >
J2c � 1:2 has pure extended s-wave pairing symmetry sx2y2

phase. The phase on the right side, where J1 > J1c � 1:05,
is a mixture of sx2þy2 and a small amount of dx2�y2 . The

remaining large part of phase diagram is described by a
phase with mixed sx2y2 and small dx2�y2 pairing order

parameters. In this mixed state, the signs of the dx2�y2 or-

der parameters in the two orbitals are opposite. Namely,
if �1 ¼ a cosðkxÞ cosðkyÞ þ b½cosðkxÞ � cosðkyÞ�, �2 ¼
a cosðkxÞ cosðkyÞ � b½cosðkxÞ � cosðkyÞ�. We do not find

a dxy solution in the entire parameter region. Time-reversal

broken states, such as sþ id, are not favored.
The above results can be understood analytically. First,

we can plot a pairing weight W3 �W1 as a function of the
Brillouin zone momentum (kx, ky) (Fig. 2) by taking �2 ¼
�1 ¼ 1 in Eq. (9). The values of order parameters are
determined by the pairing symmetry factor function times
this quantity. The dominant contribution is clearly around
�, M and (�, �). The dxy order, in which the pairing

symmetry factor, sinkx sinky, is peaked around (��=2,

��=2) has small overlap with the pairing weight and is
not favored. Second, the mixing strength of two order
parameters is determined by multiplying the two symmetry
factors (f1, f2) of two order parameters and the paring
weight:

P
kf1ðkÞf2ðkÞ½W3ðkÞ �W1ðkÞ�. It is easy to check,

for a mixture of sx2y2 and dx2�y2 , i.e., f1 ¼ coskx cosky,

f2 ¼ ðcoskx � coskyÞ that the summation has a large con-

tribution from the Brillouin zone momentum around the
electron pocket. The mixture strength of the other two
order parameters (sx2y2 and sx2þy2) is very small. This

explains why the phase diagram is dominated by the mix-
ture of sx2y2 and a small amount of dx2�y2 . Finally, the

difference of the relative sign between the sx2y2 and dx2�y2

order parameters in the two different orbitals is a result of
the fact that exchanging kx to ky maps the xz to the yz

orbital.
The part of the phase diagram in Fig. 1 with mixed sx2y2

and small dx2�y2 pairing becomes larger as the electron

doping concentration is reduced: the mixing strength of
sx2y2 and dx2�y2 order parameters is (very slightly) in-

creased due to the enhanced contribution around the M
points. In Fig. 3, we plot the transition temperature as a
function of electron doping level at the fixed values of J1 ¼
0:25 and J2 ¼ 0:5. On the electron-doped side, Tc is re-
duced by increasing the doping concentration. This is
similar to Ref. [23] and it is, of course, around half-filling,
an artifact of the mean-field solution. The true ground state
at half-filling is a spin-density wave [24] which gives way
to a superconductor as the filling is increased [25].
Solutions including orbital-crossing exchange and

Hunds coupling.—We now consider the orbital-crossing
exchange antiferromagnetic coupling, J1;12, J2;12 and

Hunds coupling JH. In mean field, we can decouple it in
the particle-particle channel. The orbital-crossing ex-
change coupling can be decoupled in four spin-singlet
orbital-crossing pairing order parameters, �0ðkÞ ¼
�0

x2þy2
ðkÞ þ �0

x2�y2
ðkÞ þ�0

x2y2
ðkÞ þ�0

xyðkÞ. Hunds cou-

pling can be decoupled to an on-site spin-triplet, orbital-
singlet, order parameter, �H ¼ P

khc1;k;"c2;�k;# �
c2;k;"c1;�k;#i. The new mean-field Hamiltonian is H0

m ¼P
k�ðkÞyBðkÞ�ðkÞ with BðkÞ ¼ AðkÞ þ �AðkÞ

�AðkÞ ¼
0 0 0 �0 þ�H

0 0 �0� ���
H 0

0 �0 ��H 0 0
�0� þ��

H 0 0 0

0
BBB@

1
CCCA:

FIG. 2 (color online). 3D plot of the pairing weight W3 �W1

as a function of (kx, ky) (electron doped) by setting�1 ¼ �2 ¼ 1

in Eq. (9).
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We have an additional self-consistent equation:

�0ðkÞ þ�H ¼ X
k0;m

V 0
k;k0U

0�
4mðk0ÞU0

1mðk0ÞFðE0
mðk0ÞÞ (10)

where the interorbital potential V 0
k;k0 contains NN coupling

� 2J1;12
N

P
�ðcoskx � coskyÞðcosk0x � cosk0yÞ, a NNN cou-

pling � 8J2;12
N ðcoskx cosky cosk0x cosk0y þ sinkx sinky 	

sink0x sink0yÞ and Hund’s rule � JH
N . The self-consistent

equations are solved numerically. We find that in the region
where JH �MaxðJ1; J2Þ, �H is extremely small. Hence,
Hunds coupling has little effect on pairing symmetry. In the
mixed sx2y2 and dx2�y2 phase, for J1;12 & J1 and J2;12 & J2,

the orbital-crossing pairing order�0 is zero within comput-
ing error except for dxy. We find that a coexisting small

interorbital paring order with dxy symmetry, �0ðkÞ ¼
�0

0 sinðkxÞ sinðkyÞ. In Fig. 3, we plot the result for the

intraorbital pairing order parameters sx2y2 and dx2�y2 , and

the interorbital pairing order parameter dxy as a function of

J ¼ J1 ¼ J2 ¼ J1;12 ¼ J2;12 when the chemical potential

is � ¼ 1:8—corresponding to 18% electron doping. The
result is a direct consequence of the dxy symmetry match-

ing between the orbital-crossing pairing and the orbital-
crossing hopping term.

Discussion and Summary.—Although our prediction of
the pairing symmetry is based on a two-orbital model, we
believe it to be robust even if other orbitals are added. The
pairing symmetry induced by the antiferromagnetic ex-

change coupling is mainly determined by the structure of
Fermi surfaces. As the Fermi surfaces in oxypnictides are
located at � and M points, the dxy paring symmetry never

wins over sx2y2 . As the Fe-based superconductors are in the

regime J2 > J1 [15,17], we predict an sx2y2 ¼ cosðkxÞ	
cosðkyÞ order parameter in the superconducting state,

which changes sign between the electron and hole Fermi
surfaces. Moreover, we find that the interorbital pairing is
small even if the orbital-crossing exchange is strong.
Future research will focus on the effects of disorder on
the superconducting state [26].
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FIG. 3 (color online). (a) The pairing transition temperature as
a function of the electron doping concentration at J1 ¼ 0:25 and
J2 ¼ 0:5. The dotted line indicates the region where the spin-
density wave competing phase takes over from the supercon-
ducting phase. (b) The intraorbital, sx2y2 , dx2�y2 and the inter-

orbital, dxy, pairing order parameter, as a function of

J ¼ J1 ¼ J2 when the chemical potential is � ¼ 1:8.
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