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We present the experimental realization and theoretical understanding of a membrane-type acoustic

metamaterial with very simple construct, capable of breaking the mass density law of sound attenuation in

the 100–1000 Hz regime by a significant margin (�200 times). Owing to the membrane’s weak elastic

moduli, there can be low-frequency oscillation patterns even in a small elastic film with fixed boundaries

defined by a rigid grid. The vibrational eigenfrequencies can be tuned by placing a small mass at the center

of the membrane sample. Near-total reflection is achieved at a frequency between two eigenmodes where

the in-plane average of normal displacement is zero. By using finite element simulations, negative

dynamic mass is explicitly demonstrated at frequencies around the total reflection frequency. Excellent

agreement between theory and experiment is obtained.
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Acoustic or elastic metamaterials [1–5] extend the realm
of elastic wave characteristics achievable by phononic
crystals and natural materials. In particular, negative dy-
namic mass density [5] composites have demonstrated
significantly subwavelength attenuation of sound in the
audible regime by breaking the mass density law [1].
Here negative dynamic mass means that the spatially aver-
aged force and acceleration are opposite in phase, and
composites with such microscopic components can display
macroscopic dynamics that deviates from Newton’s second
law [6]. In the ultimate limit of such materials, it would be
desirable to have a thin and lightweight membrane with
metamaterial characteristics that can operate effectively in
the 100–1000 Hz range, the most difficult regime as dic-
tated by the mass density law. However, stopping low-
frequency sound with a thin membrane is against simple
intuition, as it is hard to imagine the elastic membrane can
either effectively absorb or reflect the sound. An especially
powerful argument against the latter is that total reflection
requires the formation of a node at the reflecting surface;
hence, a membrane with weak elastic restoring force nor-
mal to its surface is an unlikely candidate to be a low-
frequency sound reflector.

In this Letter, we present the experimental realization
and theoretical understanding of a membrane-type meta-
material with negative dynamic mass characteristics, op-
erative in the 100–1000 Hz frequency regime. By stacking
such membrane-type panels with different operative fre-
quencies, we could realize relatively broadband effective-
ness. It is shown that precisely because of the weak elastic
moduli of the membrane, there can be various low-
frequency oscillation patterns even within a small and
finite sample with fixed boundaries as defined by a rigid
grid. Such vibrational eigenmodes can be tuned by placing
a small mass at the center of the membrane sample, and
near-total reflection is achieved at a frequency between two

eigenmodes where the in-plane average of displacement
(normal to the membrane) is zero, leading to very small
far-field transmission. By using finite-element simulations,
negative dynamic mass is explicitly demonstrated at fre-
quencies around the total reflection frequency. Excellent
agreement between theory and experiment is shown.
The basic unit of our metamaterial consists of a circular

elastic membrane (20 mm in diameter and 0.28 mm thick)
with fixed boundary, imposed by a relatively rigid grid,
with a small weight attached to the center. Acoustic waves
are incident perpendicular to the membrane plane. Other
grid shapes, such as square grids, can be used to the same
effect. The central mass is a hard disk 6.0 mm in diameter
on which Blu Tack putty can be added to increase the total
mass up to 300 mg.
Measurements of the transmission amplitude and phase

were conducted in a modified impedance tube apparatus,
details of which can be found in [7]. Briefly stated, the
apparatus consists of two Brüel and Kjær type-4026 im-
pedance tubes with the sample sandwiched in between.
The front tube has a loud speaker at one end to generate a
plane wave in the tube. There are two sensors in the front
tube to sense the incident and reflected waves. The third
sensor in the back tube, terminated with an anechoic
sponge, senses the transmitted wave. The signals from
the three sensors are sufficient to resolve the transmitted
and reflected wave amplitudes, in conjunction with their
phases.
Figure 1(a) shows the measured transmission amplitude

(solid red curve) and phase (dotted green curve) spectra.
The blue dashed line indicates the mass density law [8] that
is pertinent to our sample density of 0:1 kg=m2. There are
two peaks at 145 and 984 Hz. But perhaps the most
surprising is the dip at 237 Hz that breaks the mass density
law by a factor of 200, implying near-total reflection by
such a flimsy membrane. Below we show this phenomenon
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arises directly from the negative dynamic mass at this
frequency, and it is an inevitable consequence of multiple
low-frequency vibrational eigenmodes of the system.

In Fig. 1(b) we show the calculated transmittance am-
plitude (solid red curve) and phase (dotted green curve) of
a circular thin rubber membrane by using COMSOL

MULTIPHYSICS, a finite-element analysis and solver soft-

ware package. The edge of the circular membrane was
fixed, with a 6.0 mm diameter circular steel disk of
300 mg fixed at the center. In our calculation, the mass
density, Young’s modulus, and the Poisson ratio for the
rubber membrane are 980 kg=m3, 2� 105 Pa, and 0.49,
respectively. While Young’s modulus and Poisson’s ratio
for the disk are 2� 1011 Pa and 0.29, respectively.
Standard values for air, i.e., � ¼ 1:29 kg=m3, ambient
pressure of 1 atm, and speed of sound in air of c ¼
340 m=s were used. It can be seen that there are two
transmission peaks at 146 and 974 Hz, with a dip at
272 Hz. These features do not depend on the incidence
angle of the sound waves, owing to the orders of magnitude
difference between the wavelength of sound in air and the
sample size. It is seen that the theoretical predictions agree
very well with the experiments under normal incidence.

The effective dynamic mass of the system may be
obtained by dividing the averaged stress by the averaged
acceleration, i.e., �eff ¼ h�zzi=hazi, with hi denoting vol-
ume average over the whole membrane structure (mem-
brane plus the weight), while �zz and az are the stress and
acceleration normal to the membrane plane at rest, respec-
tively. Figure 2 shows the results of such calculations.
Close to the transmission dip frequency, the effective dy-
namic mass turns from positive to negative. It then jumps
to positive at the dip frequency and then approaches the
actual value of the system (�0:1 kg=m2) at high frequen-
cies. Also plotted in Fig. 2 is the in-plane averaged normal
displacement (the dotted green curve), which peaks at the
two eigenmodes and goes through zero at the frequency
where the transmission is at a minimum. As shown below,
there is a link between the two phenomena.
Our calculations also show that the first low-frequency

transmission peak is due to the eigenmode in which the
membrane and the weight vibrate in unison, while the
second transmission peak at high frequency is due to
the eigenmode in which the membrane vibrates while the
central weight remains almost motionless. As a result, the
first peak frequency should depend strongly on the mass of
the central weight, while the second peak frequency should
have a very weak dependence on the central mass. The
experimental transmission spectra for different masses
show the same feature of twin peak with a dip in between.
The first transmission peak and the dip shift significantly to
higher frequencies with the reduction of the mass, while
the second transmission peak shifts only by a very small
amount. The frequencies of these peaks and the dip are
listed in Table I, along with the theoretical results in paren-
thesis. It is seen that good agreement is achieved between
theory and experiments. The discrepancy between the
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FIG. 2 (color online). The calculated effective dynamic mass
of the resonator (red solid curve, left axis) as defined in the text,
together with the in-plane averaged normal vibration amplitude
(green dotted curve, right axis), evaluated with an incident wave
with pressure modulation amplitude of 103 Pa. It is seen that in
our system, negative dynamic mass and jhuzij � 0 coincide, and
they constitute the basic mechanism for near-total reflection of
low-frequency acoustic waves.
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FIG. 1 (color online). (a) Experimental transmission amplitude
(solid red curve) and phase (dotted green curve) of the mem-
brane resonator. The blue dashed line indicates the transmission
amplitude predicted by the mass density law with the same
average area mass density as the resonator. (b) Theoretical trans-
mission amplitude (solid red curve) and phase (dotted green
curve) of the membrane resonator.
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predicted and experimental peak frequencies is less than
10%, while that between the dips is about 20%. The overall
trend of the observed variations with the mass of the central
weight is very well reproduced by theory.

The frequency trend of the transmission dip is observed
to follow that of the first eigenmode. This is understand-
able, since the vibration amplitude at the dip frequency
may be expressed as the superposition of the amplitudes
for the two eigenmodes, with an opposite phase [since the
dip frequency is higher than the first eigenfrequency but
lower than the second, and the resonance response is
proportional to ð!2

i �!2Þ�1, with !i being the ith eigen-
frequency]. The dynamic mass behavior at the dip fre-
quency is directly related to the fact that the integral of
the membrane surface’s normal displacement passes
through zero at that frequency, as seen in Fig. 2. This is
easy to see since ��1

eff / hazi �!2huzi, where uz denotes
the normal component of the displacement. By decompos-
ing the displacement vector ~u ¼ � ~uþ huzi, we may attrib-
ute the far-field transmission to huzi and the near-field
effects to � ~u. This is because the huzi part would generate
a wave field that has lateral wave vector components
peaked at kjj ¼ 0, and thus the transmitted field due to

this ‘‘pistonlike’’ motion will be just a plane wave with the
same wave vector as that of the incident wave (since k2k þ
k2? ¼ !2=c2, where c is the sound speed in air). In par-

ticular, huzi ¼ 0 implies total reflection. In contrast, � ~u
would generate a wave field that has lateral wave vector
components that are peaked at kk >!=c as described

below, and hence can only be related to evanescent waves
in the transmission direction. In fact, far-field transmit-
tance amplitude may be expressed as

T ¼
�
1� i

�
2�c!

X
�

hu�z i2
m�ð!2

� þ 2ib!�!2Þ
��1

��1
; (1)

where T is the transmission amplitude, � the density of air,
b the damping coefficient, ! the frequency of incident
wave, and !�, m�, and hu�z i are the �th eigenfrequency,

the generalized mass (m� ¼ R
�ðr*Þju*�ðr*Þj2dr*, with the

integral performed over the whole membrane), and the

surface integral of the �th eigenmode’s normal displace-
ment, respectively.
The near-total reflection by our membrane is not the

same as that for a rigid surface, where a node must exist.
Because of the weak elastic modulus of the rubber mem-
brane, the tangential wave vector kk of the vibrational

eigenmodes is on the same order as the inverse of the
membrane radius r. Since r is on the order of centimeter,
it follows that the wave field generated by the vibrational
eigenmodes must have kk � k0 ¼ !=c in the frequency

range of several hundred hertz. As a result, the normal
wave vector k? is imaginary and jk?j � k0, which means
that in the absence of a nonzero huzi, the acoustic waves
should display an evanescent decay over a distance on the
order of 2�=jk?j.
Figure 3 shows the calculated normal velocity field at

the dip frequency of 272 Hz seen in Fig. 1(b). Indeed, the
evanescent wave characteristics are seen in the acoustic
field distribution near the surfaces of the rubber membrane.
In accordance with the simple analysis, we can estimate the
decay distance d as

d ¼ log2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2�

r

�
2 �

�
!

c

�
2

s
: (2)

For our experimental case with r ¼ 1 cm and ! ¼
272 Hz, the damping distance is about 1.6 mm. This is
indeed the case as seen in Fig. 3.
Our membrane-type metamaterial is essentially a two-

dimensional version of the locally resonant sonic material
presented earlier [1]. To compare these two cases, we have
performed simulations on the case where a spherical
weight is surrounded by rubber [7] in a three-dimensional
configuration. Results show that the lowest-frequency
eigenmode is one in which the spherical weight and rubber

FIG. 3 (color online). The normal velocity field distribution
near the membrane at the dip frequency of 272 Hz, where the
black dashed line denotes the position of membrane plane. The
axes are in units of millimeters, while the velocity is in mm=s
(calculated with the same incident wave intensity as that for
Fig. 2). Damping characteristics near the membrane surfaces
indicate a decay length of 1.6 mm, which agrees well with that
predicted by Eq. (2).

TABLE I. The experimental transmission peak and dip fre-
quencies together with the theoretical values in parentheses.

Mass

(mg)

1st peak frequency

(Hz)

Dip frequency

(Hz)

2nd peak frequency

(HZ)

50 286 (322) 555 (627) 1018 (1036)

100 223 (242) 376 (458) 1000 (1000)

150 192 (202) 340 (378) 976 (987)

200 166 (177) 284 (329) 1025 (981)

250 154 (159) 259 (296) 984 (977)

300 145 (146) 237 (272) 984 (974)
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vibrate in unison, while the second eigenmode is due al-
most entirely to rubber vibration only. Between the two
eigenmodes there is a transmission dip at which the vibra-
tion mode is the mixture of the two. Thus both the 3D and
2D versions of our metamaterials have the same underlying
physics. This understanding is important as it enables the
generalization to other material configurations which may
also exhibit the negative dynamic mass phenomenon.

Another point to note is that since the negative mass dip
in transmission always occurs between the first two eigen-
modes, the required elasticity contrast between the central
plate (the weight) and the membrane is not very stringent.
As long as the frequencies of the bending modes of the
central plate, where part of the plate is vibrating out of
phase from the other, are well above the first two eigen-
modes, the presence of the negative mass dip will not be
affected. The bending of the plate could change the fre-
quencies of the two eigenmodes while the plate is vibrating
in phase as a whole, which could change the dip frequency
but not its existence.

In summary, we have fabricated and characterized a
membrane-type metamaterial which demonstrates negative
dynamic mass and near-total reflect acoustic waves with
frequencies as low as 200–300 Hz. Theoretical understand-
ing of this robust effect is shown to lead to predictions in
excellent agreement with the experiments.
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