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We investigate the properties of a recently proposed gradient echo memory (GEM) scheme for

information mapping between optical and atomic systems. We show that GEM can be described by the

dynamic formation of polaritons in k space. This picture highlights the flexibility and robustness with

regards to the external control of the storage process. Our results also show that, as GEM is a frequency-

encodingmemory, it can accurately preserve the shape of signals that have large time-bandwidth products,

even at moderate optical depths. At higher optical depths, we show that GEM is a high fidelity multimode

quantum memory.
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The ephemeral nature of photons makes them simulta-
neously useful and frustrating as messengers for quantum
information. On the one hand, they travel with low absorp-
tion and are easy to produce and detect. On the other hand,
photons are hard to store in a manner that preserves quan-
tum characteristics. Over the last few years quantum in-
formation science has motivated the study of memories
that can preserve the quantum characteristics of optical
states [1]. Such quantum memories are key components of
technologies such as single photon sources that are re-
quired for many quantum information protocols, and quan-
tum repeaters that would allow propagation of quantum
states over large distances [2].

There has been much work on light storage using tech-
niques such as electromagnetically induced transparency
(EIT) [1] and Raman transfer [3–5]. Dynamic control of
the reading and writing stages for single temporal modes
can be used to optimize these systems and large classical
efficiencies of 40% have been reported for EIT in a vapor
cell [6]. Photon echo techniques are also candidates for
light storage. They allow a high density of classical infor-
mation to be stored [7] with high efficiency [8]. Photon
echo quantum memories have been proposed using con-
trolled reversible inhomogeneous broadening (CRIB) [9]
and atomic frequency combs [10], both of which include �
pulses in the storage protocol. The gradient echo memory
(GEM) is a recently proposed variant of CRIB where the
memory control is purely electro-optic and� pulses are not
required [11,12]. GEM is predicted to be 100% efficient in
the limit of large optical depths. So far, experimental
demonstrations of GEM have shown classical efficiencies
of 15% limited mostly by the optical thickness of the
storage medium [12].

In this Letter we show how GEM can be described using
normal modes in k space. The analysis shows that the
storage efficiency of GEM is not affected by the external
control of the memory in time and demonstrates its poten-

tial to preserve the shape of pulses that have large time-
bandwidth products (TBW) [13]. Last, we show that GEM
can simultaneously store a large number of temporal
modes, allowing its implementation in recently proposed
quantum repeater protocols [14].
The GEM scheme is shown in Fig. 1. An ensemble of

identical two-level atoms with homogeneous linewidth � is
subjected to an electric field that varies linearly in z caus-
ing a linearly varying Stark shift. A light field enters the
medium within a time interval ½t1; t2�. After some time
�s=2 the electric field gradient is flipped, leading to tem-
poral reversal of the atomic phases. At time �s, the dipoles
have all rephased and the input light emerges in the for-
ward direction. In the weak excitation limit, Heisenberg-
Langevin equations can be solved by treating the optical
field and atomic polarization operators as c numbers [12].
In a reference frame moving at the speed of light, the
equations for the weak optical field E and atomic polariza-
tion � are found to be [12]

@

@t
�ðz; tÞ ¼ �½�=2þ i�ðtÞz��ðz; tÞ þ igEðz; tÞ;

@

@z
Eðz; tÞ ¼ iN �ðz; tÞ;

(1)

FIG. 1 (color online). (a) An ensemble of identical two-level
atoms is Stark shifted by a linear electric field and the light field
is sent into the storage medium. (b) After switching the polarity
of the electric field, the input field comes out as a forward
traveling echo.
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where N is the effective linear density of atoms and g is
the atomic coupling strength. The linearly varying Stark
shift is given by �ðtÞz, where the slope �ðtÞ can be con-
trolled in time. We will neglect the decay rate � by assum-
ing �s � 1=�. The amount of light trapped in the medium
depends on the optical depth. It has been shown [15] that
the power in each frequency component n within the
bandwidth of the medium is stored with efficiency

ffiffiffiffiffiffi
�n

p ¼
1� e�2�� where � ¼ gN =� is the optical depth.

To describe the further evolution of the excitation inside
the medium, we solve the problem within the time interval
t2 < t < �s. We make a plane-wave decomposition of the
optical and atomic fields via a spatial Fourier transform of
Eqs. (1), therefore introducing single mode operators in
time and k space. In this coordinate system, we can identify
the normal modes �ðk; tÞ ¼ kEðk; tÞ þN �ðk; tÞ which,
from Eqs. (1) have the following equation of motion

�
@

@t
� �ðtÞ @

@k
� igN

k

�
�ðk; tÞ ¼ 0: (2)

From the Maxwell equation we see that the orthogonal
normal modes �ðk; tÞ ¼ kEðk; tÞ �N �ðk; tÞ are not ex-
cited regardless of the time dependence of �ðtÞ.

Equation (2) shows that the rate at which�ðk; tÞ evolves
in the k-t plane is controlled by the Stark shift �ðtÞ. This is
because the Stark gradient leads to a linear phase shift of
�ðz; tÞ as function of z, which is equivalent to a displace-
ment in k space. The phase term in the propagation equa-
tion (igN =k) results from the interference between the
atomic polarization and light that is reradiated by the
atoms. As �ðk; tÞ reaches high k values, the amplitude of
the electric field tends to zero and the phase shift becomes
negligible. Considering the quantum operators, we find the

commutator ½�̂; �̂y� ¼ k2 þN 2. We are, however, free
to switch�ðtÞ to zero at any point in time so that the normal

mode stays in the same spatial mode k. In this case, �̂k ¼
�̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þN 2

p
will be bosonic and can be identified as a

polariton.
Some numerical simulations are shown in Fig. 2 for an

abrupt (top row) and gradual (bottom row) change in the
sign of �. In both cases Eðz; tÞ (left column) reaches a
minimum magnitude at the switching point (�s=2). The
phase evolution, best seen in �ðz; tÞ (center column) is
clearly different, with the spatial oscillations in phase
substantially faster for the case of abrupt switching. This
is manifest in the k-space evolution of the normal modes
(right column). For fast switching �ðk; tÞ evolves at con-
stant speed on the k-t plane with a velocity reversal at �s=2.
For the slow switch �ðk; tÞ slowly changes direction sym-
metrically about �s=2. Regardless of the Stark-shift dy-
namics, �ðk; tÞ propagates without loss. When �ðk; tÞ
returns to its input k value the optical field leaves the
storage medium. The portion of light that is retrieved is
1� e�2�� [15], with the remainder of the light remaining
trapped in the polaritonic mode. The total efficiency, in-
cluding input and output losses, is thus ð1� e�2��Þ2 for all
spectral components within the Stark bandwidth.
A coherent superposition of atomic polarization and

optical field also exists in EIT, in the form of dark state
polaritons [16]. A qualitative comparison with the GEM
normal mode is quite illuminating. In EITwe haveN atoms
in a �-level scheme as shown in Fig. 3(a), where E is the
light to be stored. �c is the strong beam that is used to
control the dynamics of the storage and thus plays an
analogous role to � in the GEM scheme. The EIT normal
mode will propagate slowly through the EIT medium while
�c is nonzero, and will become stationary when �c ¼ 0.
We consider here the case of the adiabatic switching of�c

discussed in [16], which allows the storage of a frequency
band within the EIT bandwidth and of temporal modes
compressed within the atomic sample.
To illustrate the properties of GEM and EITwe consider

the storage of an amplitude modulated pulse, as shown in
Fig. 3(b). The EIT polariton is shown in Fig. 3(c) and a
spatial cross section at 45 �s shows that the temporal
profile of the input pulse has been mapped into a spatial
profile of the polariton. Figure 3(d) shows the absolute
value of Eðz; tÞ in a GEM system. When the Stark shift is
flipped, the echo emerges in the forward direction and, as
demonstrated by the cross sections, the output pulse is a
time-reflected image of the input. This reversal could be
corrected by using two cascaded GEM systems [12].
Figure 3(e) shows the absolute value of �ðz; tÞ in the
GEM medium. The spatial cross section at 45 �s is the
Fourier spectrum of the modulated input pulse. This ex-
plicitly shows the frequency-encoding nature of GEM.
Figure 3(f) again demonstrates this Fourier relationship
by showing the evolution of the polaritons in k space. Any

FIG. 2 (color online). Top row: Abrupt switching of �, Bottom
row: slow switching of � using a tanh function with time
constant 58 �s. In all cases, the dipole ensemble spans z ¼
�3 to 3 mm, a Gaussian pulse enters the medium with its peak at
t ¼ 5 �s, the Stark shift is switched at 80 �s, and the optical
depth gN =� ¼ 3:3.
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cross section in the k axis shows the temporal profile of the
pulse, as seen in the inset.

A consequence of the above properties is that, provided
the residual phase shifts and the decoherence � are negli-
gible, the GEM storage efficiency can be maintained as the
length of the signal is increased. For multimode light
storage this means that, in the plane-wave basis, the fidelity
does not depend critically on the number modes stored. To
demonstrate this result, let us introduce envelope mode

functions defined in the region ½t1; t2�, as unðtÞ ¼
ei!nt=

ffiffiffiffi
T

p
, where T ¼ t2 � t1. This plane-wave basis

funðtÞg, is orthonormal and complete when !n ¼ 2�n=T
where n is an integer. In practice, a frequency cutoff will be
given by the memory or detection bandwidth �!=2� so
that the number of plane-wave modes required to recon-
struct any quantum state is Nmod ¼ T�!=2�. The multi-

mode input field ÊinðtÞ can be written as a unique linear

superposition of those mode functions as ÊinðtÞ ¼P
nâ

in
n unðtÞ where âinn is a single bosonic mode. We also

write the mean total number of photons
P

nhðâinn Þyâinn i ¼
Nph. We then define the fidelity for the storage of ÊinðtÞ, as
its correlation with the time-reversed output field ÊoutðtÞ

F ¼ 1

Nph

Z t2

t1

dthÊy
outð�� tÞÊinðtÞi; (3)

where � is the delay that maximizes F . In general the

output can be expressed as ÊoutðtÞ ¼ P
n

ffiffiffiffiffiffi
�n

p
âinn unð�tÞ þ

b̂ðtÞ, where b̂ðtÞ includes the polaritonic modes left in the
memory, and potential noise originating from the coupling

with the other modes of ÊinðtÞ. We also define F r ¼
F =

ffiffiffiffi
�

p
as a measure of pulse preservation independent of

the total efficiency � ¼ P
n�n.

EIT based quantum memories can be optimized to store
a single mode [4] using temporal shaping of the control
beam. Experiments have shown the technique to be highly
effective [6]. Optimal storage of multimode fields using
EIT is, at this stage, still an open problem. The adiabatic
EIT protocol [16] modeled in Fig. 3 can store a quantum
state comprised of multiple modes. Compressing it into the
storage medium requires a small group velocity for the
whole signal, which in turn means a small global frequency
bandwidth. The storage properties of GEM are rather
different. In a sense, GEM is a one-step realization of the
proposal made in [17]. Many resonant systems are spread
over a frequency interval to give a uniform time and
frequency response. In GEM, the input temporal modes
are not spatially compressed within the medium so that all
the frequency modes within the memory bandwidth are
stored with equal efficiency, independent of optical depth.
To demonstrate the multimode capabilities of GEM, we

calculate the storage fidelity for each of the plane-wave
basis modes within the interval T1 ¼ ½35; 45� �s. The
simulations were performed using a memory bandwidth
of �!=2� ¼ �L=2� ¼ 8 MHz so that the number of
modes that can be stored is Nmod ¼ T�!=2� ¼ 80. All
modes with a Fourier spectrum that lie within the memory
bandwidth have identical storage fidelity. Figure 4 (i)
shows the fidelity for all modes within the memory band-
width and time interval T1 when stored and retrieved
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FIG. 4 (color online). Multimode capacity of GEM in the
plane-wave basis with �L=2� ¼ 8 MHz. Traces (i), (ii), and
(iii) show the fidelity (F ) for all modes within the memory
bandwidth and temporal extents ½35; 45�, ½20; 60�, and
½10; 70� �s, respectively. Trace (iv) shows the mode shape
preservation (F r) for modes within ½10; 70� �s.

FIG. 3 (color online). (a) The � level scheme used for EIT.
(b) Modulated pulse used in the simulations. (c) EIT normal
mode. Model parameters were N ¼ 5000, g ¼ 1, and �cð0Þ ¼
50, normalized to the spontaneous emission rate. The control
field was switched using tanh functions with a 2 �s time
constant at 14 and 75 �s. In the case of GEM, (d) shows jEj,
(e) shows j�j, and (f) shows j�j. The switching was done at
45 �s using a tanh function of time constant 20 �s. Optical
depth gN =� ¼ 3:3. The efficiency in both schemes is close to
100%.
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independently. When the optical depth is above 0.75, the
fidelity is>99% for all the modes. This shows that, at large

optical depths, the noise term b̂ðtÞ is negligible so that our
memory only outputs linear combinations of these input
modes. We conclude that any multimode field within this
interval and bandwidth has the same fidelity F > 99%.

We now evaluate the potential of GEM to store more
modes by increasing the signal duration symmetrically
around t ¼ 40 �s. Figues 4 (ii) and (iii) show the result
of simulations performed on plane-wave modes within the
memory bandwidth and time intervals ½20; 60� and
½10; 70� �s, respectively. As the signal length increases,
F degrades, but this is not irreparable. Figure 4 (iv) shows
the mode overlap F r corresponding to trace (iii). This
shows that at small optical depths, the pulse shape preser-
vation is ideal, although the fidelity is poor due to low
quantum efficiency. For high optical depths, on the other
hand, the total efficiency � is ideal [12], but the mode
overlap is degraded due to the phase shifts in the storage
system as the pulse length is now comparable to the storage
time [12,15,18]. In the present simulations, the effect is an
identical and deterministic frequency shift 	 to all the
modes. We verified numerically that this shift can be
repaired by applying an offset �z� 	 to the Stark field
during the readout stage. After choosing the appropriate 	
for each optical depth, modes with longer temporal extents
can be retrieved with the fidelity shown in Fig. 4 (i).
Another simple solution is to shift the output field fre-
quency externally using an AOM.

For even longer signals (T > 80 �s), the phase shifts
yield slightly nonuniform frequency shifts [15,18].
Increasing the storage time can then be used to improve
the fidelity. A storage time of 330 �s, for example, will
keep the fidelity above 90% in all cases shown in Fig. 4
without extra manipulations of the Stark shifts. The excited
state decay (�) will eventually limit the length of signal,
and number of modes, that GEM can store. One can then
realize a quasi-two-level atom using a Raman transition.
The decoherence time will be given by the very slow
ground state decay of a � system [19].

In conclusion, this study reveals several important fea-
tures of the GEM scheme. We have identified lossless
polaritons that are shown to be insensitive to the switching
dynamics of the Stark shift. Even at low optical depths, this
memory scheme preserves the pulse shape of signals that
have large time-bandwidth product. For larger optical
depths, we have shown that GEM is a high fidelity multi-
mode memory provided the storage time is shorter than the
decoherence rate.

The authors would like to thank Joseph Hope for useful
discussions. This work was supported by the Australian
Research Council.

Note added.—During the revision of the manuscript, we
became aware of the work of [20] that discusses the multi-
mode properties of quantum memories.
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